initiation musicale toulon   CHAOS, IMPRÉDICTIBILITÉ, HASARD
  initiation musicale

 

 

 

 

 

 

CHAOS, IMPRÉDICTIBILITÉ, HASARD

Le monde qui nous entoure paraît souvent imprévisible, plein de désordre et de hasard. Une partie de cette complexité du monde est maintenant devenue scientifiquement compréhensible grâce à la théorie du chaos déterministe. Cette théorie analyse quantitativement les limites à la prédictibilité d'une l'évolution temporelle déterministe : une faible incertitude initiale donne lieu dans certains cas à une incertitude croissante dans les prévisions, et cette incertitude devient inacceptable après un temps plus ou moins long. On comprend ainsi comment le hasard s'introduit inévitablement dans notre description du monde. L'exemple des prévisions météorologiques est à cet égard le plus frappant. Nous verrons comment les idées à ce sujet évoluent de Sénèque à Poincaré, puis nous discuterons comment le battement d'ailes du papillon de Lorenz peut affecter la météo, donnant lieu à des ouragans dévastateurs des milliers de kilomètres plus loin. Ainsi, la notion de chaos déterministe contribue non seulement à notre appréciation pratique des incertitudes du monde qui nous entoure, mais encore à la conceptualisation philosophique de ce que nous appelons cause et de ce que nous appelons hasard.

Texte de la 218e conférence de l’Université de tous les savoirs donnée le 5 août 2000.
Chaos, imprédictibilité et hasard par David Ruelle

Pour interpréter le monde qui nous entoure nous utilisons un grand nombre de concepts très divers. Certains concepts sont concrets comme vache, puceron, papillon, d’autres abstraits comme espace, temps, hasard, ou causalité. Ces concepts sont des créations humaines : leur histoire est intimement liée à celle du langage, et leur contenu peut varier d’une culture à une autre. Nous pensons que des mots comme espace, temps, hasard, causalité correspondent à des réalités fondamentales, indépendantes de la culture où nous vivons, et même indépendantes de l’existence de l’homme. Mais il faut bien admettre que les concepts abstraits que nous venons d’énumérer ont évolué au cours de l’histoire, et que cette évolution reflète un progrès dans notre compréhension de la nature des choses. Dans ce progrès, la philosophie et la science ont joué un rôle important. Dès l’Antiquité, par exemple, les gens cultivés avaient acquis une certaine idée de l’immensité de l’univers grâce aux travaux des astronomes. Des notions comme « erratique et imprévisible » ou « peu fréquent et improbable » ont sans doute une origine préhistorique ou même antérieure au langage. En effet, une bonne appréciation des risques peut aider à la survie. Ainsi si l’orage menace il est prudent de se mettre à l’abri. En général il faut se méfier des caprices des gens et de la nature, caprices qui expriment la liberté des hommes et des choses de se comporter parfois de manière aléatoire et imprévisible. Si les notions liées au hasard et au libre choix sont d’une grande aide dans la pratique, la notion de cause est aussi une conceptualisation utile : la fumée par exemple a une cause qui est le feu. De même les marées ont une cause qui est la lune : ce n’est pas tout à fait évident, mais la chose était connue des anciens, et cette connaissance pouvait être fort utile. On peut ainsi essayer de tout expliquer comme un enchaînement plus ou moins évident de causes et d’effets. On arrive de cette manière à une vision déterministe de l’univers. Si l’on y réfléchit un peu, le déterminisme, c’est-à-dire l’enchaînement bien ordonné des causes et des effets semble en contradiction avec la notion de hasard. Sénèque qui eut la charge d’éduquer le jeune Néron se penche sur le problème dans le De Providentia et dit ceci : « les phénomènes mêmes qui paraissent le plus confus et le plus irrégulier : je veux dire les pluies, les nuages, les explosions de la foudre, ..., ne se produisent pas capricieusement : ils ont aussi leurs causes. » Cette affirmation porte en germe le déterminisme scientifique, mais, il faut bien voir que son contenu est surtout idéologique. Sénèque était un amateur d’ordre, un ordre imposé par une loi éternelle et divine. Le désordre et le hasard lui répugnaient. Cependant, comme je l’ai dit, les notions liées au hasard sont utiles, pratiquement et conceptuellement, et l’on perd peut-être plus qu’on ne gagne à les évacuer pour des motifs idéologiques. On peut d’ailleurs reprocher de manière générale aux idéologies de vouloir supprimer des idées utiles, et cela s’applique encore aux idéologies modernes, dans leurs ambitions simplificatrices et leur intolérance aux fantaisies individuelles. Mais quittons maintenant le domaine idéologique pour parler de science. Et puisque le feu est la cause de la fumée, allons voir un physico-chimiste spécialiste des phénomènes de combustion. Il nous apprendra des choses fascinantes, et nous convaincra que les problèmes de combustion sont importants, complexes, et encore mal compris. En fait si l’on s’intéresse aux problèmes de causalité et de déterminisme, plutôt que de passer sa vie à étudier les problèmes de combustion, mieux vaut choisir un problème plus simple. Par exemple celui d’une pierre jetée en l’air, surtout s’il n’y a pas d’air. On peut en effet, avec une très bonne précision, décrire par des équations déterministes la trajectoire d’une pierre jetée en l’air. Si l’on connaît les conditions initiales, c’est-à-dire la position et la vitesse de la pierre à l’instant initial, on peut calculer la position et la vitesse à n’importe quel autre instant. Au lieu d’une pierre jetée en l’air nous pouvons considérer le ballet des planètes et autres corps célestes autour du soleil, ou la dynamique d’un fluide soumis à certaines forces. Dans tous ces cas l’évolution temporelle du système considéré, c’est-à-dire son mouvement, satisfait à des équations déterministes. Si l’on veut, on peut dire que les conditions initiales d’un système sont la cause de son évolution ultérieure et la déterminent complètement. Voilà qui devrait satisfaire Lucius Annaeus Seneca. Notons quand même que le concept de cause a été remplacé par celui d’évolution déterministe, ce qui n’est pas tout à fait la même chose. Par exemple, les équations de Newton qui déterminent les mouvements des planètes permettent à partir de conditions initiales données de calculer non seulement les états futurs du système solaire, mais également les états passés. On a oublié que la cause devait précéder l’effet. En fait, l’analyse scientifique du concept de cause montre qu’il s’agit d’une notion complexe et ambiguë. Cette notion nous est très utile pour vivre dans un monde complexe et ambigu, et nous ne voudrions pas nous en passer. Cependant la science préfère utiliser des concepts plus simples et moins ambigus, comme celui d’équation d'évolution déterministe. Notons d’ailleurs que l’idée de hasard semble incompatible avec la notion d’évolution déterministe tout autant qu’avec un enchaînement bien ordonné de causes et d’effets. Nous allons dans un moment revenir à ce problème. Mais avant cela je voudrais discuter une précaution verbale que j’ai prise en parlant d’équations d’évolution déterministe valables avec une très bonne précision. Si vous demandez à un physicien des équations d’évolution pour tel ou tel phénomène, il vous demandera avec quelle précision vous les voulez. Dans l’exemple de la dynamique du système solaire, suivant la précision requise, on tiendra compte ou non du ralentissement de la rotation de la terre par effet de marée, ou du déplacement du périhélie de Mercure dû à la relativité générale. Il faudra d’ailleurs bien s’arrêter quelque part : on ne peut pas tenir compte, vous en conviendrez, des déplacements de chaque vache dans sa prairie, ou de chaque puceron sur son rosier. Même si, en principe, les déplacements de la vache et du puceron perturbent quelque peu la rotation de la terre. En Bref, la physique répond aux questions qu’on lui pose avec une précision qui peut être remarquable, mais pas absolument parfaite. Et cela n’est pas sans conséquences philosophiques, comme nous le verrons plus loin. J’ai parlé des équations d’évolution déterministes qui régissent les mouvements des astres ou ceux des fluides, de l’atmosphère ou des océans par exemple. Ces équations sont dites classiques car elles ne tiennent pas compte de la mécanique quantique. En fait la mécanique quantique est une théorie plus exacte que la mécanique classique, mais plus difficile à manier, et comme les effets quantiques semblent négligeables pour les mouvements des astres, de l’atmosphère ou des océans, on utilisera dans ces cas des équations classiques. Cependant, la mécanique quantique utilise des concepts irréductibles à ceux de la mécanique classique. En particulier la mécanique quantique, contrairement à la mécanique classique, fait nécessairement référence au hasard. Dans une discussion des rapports entre hasard et déterminisme, ne faudrait-il pas par conséquent utiliser la mécanique quantique plutôt que classique ? La situation est la suivante : la physique nous propose diverses théories plus pou moins précises et dont les domaines d’application sont différents. Pour une classe donnée de phénomènes plusieurs théories sont en principe applicables, et on peut choisir celle que l’on veut : pour toute question raisonnable la réponse devrait être la même. En pratique on utilisera la théorie la plus facile à appliquer. Dans les cas qui nous intéressent, dynamique de l’atmosphère ou mouvement des planètes, il est naturel d’utiliser une théorie classique. Après quoi il sera toujours temps de vérifier que les effets quantiques ou relativistes que l’on a négligés étaient réellement négligeables. Et que somme toute les questions que l’on s’est posées étaient des questions raisonnables. Les progrès de la physique ont montré que les équations d’évolution déterministes étaient vérifiées avec une précision souvent excellente, et parfois stupéfiante. Ces équations sont notre reformulation de l’idée d’enchaînement bien ordonné de causes et d’effets. Il nous faut maintenant parler de hasard, et essayer de reformuler ce concept en termes qui permettent l’application des méthodes scientifiques. On dit qu’un événement relève du hasard s’il peut, pour autant que nous sachions, soit se produire soit ne pas se produire, et nous avons tendance à concevoir notre incertitude à ce sujet comme ontologique et fondamentale. Mais en fait l’utilité essentielle des concepts du hasard est de décrire une connaissance entachée d’incertitude, quelles que soient les origines de la connaissance et de l’incertitude. Si je dis qu’à cette heure-ci Jean Durand a une chance sur deux d’être chez lui, je fournis une information utile : cela vaut la peine d’essayer de téléphoner à son appartement. La probabilité un demi que j’attribue au fait que Jean Durand soit chez lui reflète ma connaissance de ses habitudes, mais n’a pas de caractère fondamental. En particulier, Jean Durand lui-même sait très bien s’il est chez lui ou pas. Il n’y a donc pas de paradoxe à ce que des probabilités différentes soient attribuées au même événement par différentes personnes, ou par la même personne à des moments différents. Le hasard correspond à une information incomplète, et peut avoir des origines diverses. Il y a un siècle environ, Henri Poincaré a fait une liste de sources possibles de hasard. Il mentionne par exemple qu’au casino, c’est le manque de contrôle musculaire de la personne qui met en mouvement la roulette qui justifie le caractère aléatoire de la position où elle s’arrête. Pour des raisons historiques évidentes, Poincaré ne mentionne pas la mécanique quantique comme source de hasard, mais il discute une source d’incertitude qui a été analysée en grand détail beaucoup plus tard sous le nom de chaos et que nous allons maintenant examiner. Prenons un système physique dont l’évolution temporelle est décrite par des équations déterministes. Si l’on connaît l’état du système à un instant initial, d’ailleurs arbitraire, on peut calculer son état à tout autre instant. Il n’y a aucune incertitude, aucun hasard. Mais nous avons supposé implicitement que nous connaissions l’état initial avec une totale précision. En fait, nous ne pouvons mesurer l’état initial qu’avec une précision limitée (et d’ailleurs les équations déterministes que nous utilisons ne représentent qu’approximativement l’évolution réelle du système physique qui nous occupe). Il faut donc voir comment une petite imprécision dans notre connaissance de l’état initial au temps 0 (zéro) va affecter nos prédictions sur un état ultérieur, au temps t. On s’attend à ce qu’une incertitude suffisamment petite au temps 0 donne lieu à une incertitude petite au temps t. Mais la question cruciale est de savoir comment cette incertitude va dépendre du temps t. Il se trouve que pour beaucoup de systèmes, dits chaotiques, l’incertitude (ou erreur probable) va croître rapidement, en fait exponentiellement avec le temps t. Cela veut dire que si l’on peut choisir un laps de temps T au bout duquel l’erreur est multipliée par 2, au temps 2T elle sera multipliée par 4, au temps 3T par 8, et ainsi de suite. Au temps 10T le facteur est 1024, au temps 20T plus d’un million, au temps 30T plus d’un milliard ... et tôt ou tard l’incertitude de notre prédiction cesse d’être petit pour devenir inacceptable. Le phénomène de croissance rapide des erreurs de prédiction d’un système physique, que l’on appelle chaos , introduit donc du hasard dans la description d’un système physique, même si ce système correspond à des équations d’évolution parfaitement déterministes comme celles de la dynamique des fluides ou du mouvement des astres. Voici ce que dit Henri Poincaré dans le chapitre sur le hasard de son livre Science et Méthode publiée en 1908 : « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. » Cette affirmation, Poincaré en donne un exemple emprunté à la météorologie : « Pourquoi Les météorologistes ont-ils tant de peine à prédire le temps avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien des gens trouvent tout naturel de prier pour avoir de la pluie ou du beau temps, alors qu’ils jugeraient ridicule de demander une éclipse par une prière ? Nous voyons que les grandes perturbations se produisent généralement dans les régions où l’atmosphère est en équilibre instable. Les météorologistes voient bien que cet équilibre est instable, qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de la dire ; un dixième de degré en plus ou en moins en un point quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième de degré, on aurait pu le savoir d’avance, mais les observations n’étaient ni assez serrées ni assez précises, et c’est pour cela que tout semple dû à l’intervention du hasard. » Les affirmations de Poincaré sur la météorologie dépassent, il faut bien le dire, ce que la science du début du 20-ième siècle permettait d’établie scientifiquement. Les intuitions géniales de Poincaré ont été confirmées, mais on trouverait sans peine des intuitions d’autres savants qui se sont révélées fausses. Il est donc heureux que, après avoir été oubliées, les idées de Poincaré aient été redécouvertes, étendues, et soumises à une analyse scientifique rigoureuse. Cette nouvelle période commence avec un article de Lorenz relatif à la météorologie en 1963, un article de Takens et moi-même sur la turbulence en 1971, puis une foule de travaux dans les années 70, 80, 90 qui édifient la théorie moderne du chaos. Le mot chaos lui-même apparaît dans son sens technique en 1975. Il n’est possible de donner ici qu’une vue très sommaire des aspects techniques de la théorie du chaos, mais j’insiste sur le fait que les résultats techniques sont essentiels. Ces résultats permettent de changer l’affirmation du sens commun suivant laquelle « de petites causes peuvent avoir de grands effets » en affirmations quantitatives comme celle concernant l’effet papillon dont nous parlerons dans un moment. La théorie du chaos étudie donc en détail comment une petite incertitude sur l’état initial d’une évolution temporelle déterministe peut donner lieu à une incertitude des prédictions qui croît rapidement avec le temps. On dit qu’il y a dépendance sensitive des conditions initiales. Cela veut dire que de petites causes peuvent avoir de grands effets, non seulement dans des situations exceptionnelles, mais pour toutes les conditions initiales. En résumé, le terme chaos désigne une situation où, pour n’importe quelle condition initiale, l’incertitude des prédictions croît rapidement avec le temps. Pour donner un exemple, considérons un faisceau de rayons lumineux parallèles tombant sur un miroir convexe. Après réflexion, nous avons un faisceau divergent de rayons lumineux. Si le faisceau initial était divergent, il serait encore plus divergent après réflexion. Si au lieu de rayons lumineux et de miroir nous avons une bille de billard qui rebondit élastiquement sur un obstacle convexe, la situation géométrique est la même, et on conclut qu’une petite incertitude sur la trajectoire de la bille avant le choc donne lieu à une incertitude plus grande après le choc. S’il y a plusieurs obstacles convexes que la bille heurte de façon répétée, l’incertitude croît exponentiellement, et on a une évolution temporelle chaotique. Cet exemple était connu de Poincaré, mais ce n’est que bien plus tard qu’il a été analysé de manière mathématiquement rigoureuse par Sinaï. Comme l’étude mathématique des systèmes chaotiques est d’une grande difficulté, l’étude du chaos combine en fait trois techniques : les mathématiques, les simulations sur ordinateur, et l’expérimentation (au laboratoire) ou l’observation (de l’atmosphère, des astres). Notons que les simulations sur ordinateur n’existaient pas du temps de Poincaré. Ces simulations ont joué un rôle essentiel en montrant que les systèmes déterministes tant soit peu complexes présentent fréquemment de la sensitivité aux conditions initiales. Le chaos est donc un phénomène très répandu. La météorologie fournit une application exemplaire des idées du chaos. En effet, on a de bons modèles qui décrivent la dynamique de l’atmosphère terrestre. L’étude par ordinateur de ces modèles montre qu’ils sont chaotiques. Si l’on change un peu les conditions initiales, les prédictions après quelques jours deviennent assez différentes : on a atteint la limite de la fiabilité du modèle. Bien entendu les prédictions faites avec ces modèles décollent après quelques jours de la réalité observée, et l’on comprend maintenant pourquoi : le chaos limite la prédictibilité du temps qu’il va faire. Le météorologiste Ed Lorenz, que nous avons déjà mentionné, a rendu populaire le concept de sensitivité aux conditions initiales sous le nom d’effet papillon. Dans un article grand public, il explique comment le battement des ailes d’un papillon, après quelques mois, a un tel effet sur l’atmosphère de la terre entière qu’il peut donner lieu à une tempête dévastatrice dans une contrée éloignée. Cela rappelle ce qu’écrivait Poincaré, mais paraît tellement extrême qu’on peut se demander s’il faut accorder à l’effet papillon plus qu’une valeur métaphorique. En fait, il semble bien que l’affirmation de Lorenz doit être prise au pied de la lettre. On va considérer la situation où le papillon bat des ailes comme une petite perturbation de la situation où il se tiendrait tranquille. On peut évaluer l’effet de cette petite perturbation en utilisant le caractère chaotique de la dynamique de l’atmosphère. (Rappelons que les modèles de l’atmosphère terrestre montrent une dynamique chaotique aux grandes échelles ; aux petites échelles, on a aussi du chaos à cause de la turbulence généralisée de l’air où nous baignons). La perturbation causée par le papillon va donc croître exponentiellement, c’est-à-dire très vite, et l’on peut se convaincre qu’au bout de quelques mois l’état de l’atmosphère terrestre aura changé du tout au tout. De sorte que des lieux éloignés de celui où se trouvait le papillon seront ravagés par la tempête. La prudence m’incite à prendre ici quelques précautions verbales. Il s’agit d’éviter qu’un doute sur un point de détail ne jette le discrédit sur des conclusions par ailleurs bien assurées. On peut se demander comment des perturbations aux petites dimensions (comme la dimension d’un papillon) vont se propager aux grandes dimensions (comme celle d’un ouragan). Si la propagation se fait mal ou très mal, peut-être faudra-t-il plus que quelques mois pour qu’un battement d’ailes de papillon détermine un ouragan ici ou là. Cela rendrait l’effet papillon moins intéressant. A vrai dire, la turbulence développée reste mal comprise et la conclusion de Lorenz reste donc un peu incertaine. L’image du papillon est jolie cependant, il serait dommage qu’on doive l’enterrer et, jusqu’à plus ample informé, j’y reste personnellement attaché. Quoi qu’il en soit, la circulation générale de l’atmosphère n’est pas prédictible plusieurs mois à l’avance. C’est un fait bien établi. Un ouragan peut donc se déclencher ici ou là de manière imprévue, mais cela dépendra peut-être d’incertitudes autres que les battements d’ailes d’un papillon. Si l’on y réfléchit un instant, on voit que le déclenchement d’une tempête à tel endroit et tel moment résulte d’innombrables facteurs agissant quelques mois plus tôt. Que ce soient des papillons qui battent des ailes, des chiens qui agitent la queue, des gens qui éternuent, ou tout ce qui vous plaira. La notion de cause s’est ici à ce point diluée qu’elle a perdu toute signification. Nous avons en fait perdu tout contrôle sur l’ensemble des « causes » qui, a un instant donné, concourent à ce qu’une tempête ait lieu ou n’ait pas lieu ici ou là quelques mois plus tard. Mêmes des perturbations infimes dues à la mécanique quantique, à la relativité générale, ou à l’effet gravitationnel d’un électron à la limite de l’univers observable, pourraient avoir des résultats importants au bout de quelques mois. Aurions-nous dû en tenir compte ? Il est clair qu’on n’aurait pas pu le faire. L’effet de ces perturbations infimes peut devenir important après quelques mois, mais un mur d’imprédicibilité nous interdit de le voir. Pour l’atmosphère terrestre, ce mur d’imprédicibilité est situé à quelques jours ou semaines de nous dans le futur. Je voudrais revenir brièvement à mon implication personnelle dans l’histoire du chaos. A la fin des années 60, je m’étais mis à l’étude de l’hydrodynamique, qui est la science de l’écoulement des fluides. Certains des écoulements que l’on observe sont tranquilles et réguliers, on les dit laminaires, d’autres sont agités et irréguliers, on les dit turbulents. Les explications de la turbulence que j’avais trouvées, en particulier dans un livre de Landau et Lifschitz sur l’hydrodynamique, ne me satisfaisaient pas, car elles ne tenaient pas compte d’un phénomène mathématique nouveau, dont j’avais appris l’existence dans les travaux de Smale. Quel est ce phénomène ? C’est l’abondance d’évolutions temporelles de nature étrange, avec dépendance sensitive des conditions initiales. Je m’étais alors convaincu que la turbulence devait être liée à une dynamique « étrange ». Dans un article joint avec Takens nous avons proposé que la turbulence hydrodynamique devait être représentée par des attracteurs étranges, ou chaotiques, et étudié le début de la turbulence, ou turbulence faible. Par la suite, de nombreux travaux expérimentaux ont justifié cette analyse. Cela ne résout pas le problème de la turbulence, qui reste l’un des plus difficiles de la physique théorique, mais on sait au moins que les théories « non chaotiques » jadis à l’honneur ne peuvent mener à rien. Quand le chaos est devenu à la mode, il a donné lieu à d’innombrables travaux. Certains de ces travaux développaient les aspects techniques de la théorie du chaos, et il n’est pas question d’en parler ici, d’autres analysaient diverses classes de phénomènes naturels dans l’espoir d’y trouver un comportement chaotique. C’est ainsi que j’ai proposé qu’il devait y avoir des oscillations chimiques chaotiques, ce qui effectivement a été démontré par l'expérience dans la suite. Ce fut une période féconde où, en réfléchissant un peu, on pouvait faire des découvertes d’un intérêt durable. Toutes les idées n’ont d’ailleurs pas été également bonnes. Ainsi, des essais d’application du chaos à l’économie et à la finance se sont révélés moins convaincants ; j’y reviendrai. Mais quand Wisdom et Laskar ont cherché du chaos dans la dynamique du système solaire, ils ont eu la main remarquablement heureuse. Le mouvement des astres du système solaire semble extraordinairement régulier, puisque l’on peut par le calcul prédire les éclipses, ou retrouver celles qui ont eu lieu, il y a plus de mille ans. On a donc longtemps pensé que le mouvement des planètes, et en particulier de la Terre, était exempt de chaos. On sait maintenant que c’est faux. L’orbite de la Terre est une ellipse dont les paramètres varient lentement au cours du temps, en particulier l’excentricité, c’est-à-dire l’aplatissement. En fait on a maintenant montré que la variation temporelle de l’excentricité est chaotique. Il y a donc de l’imprédicibilité dans le mouvement de la Terre. Le temps nécessaire pour que les erreurs de prédiction doublent est de l’ordre de 5 millions d’années. C’est un temps fort long par rapport à la vie humaine, mais assez court à l’échelle géologique. Le chaos que l’on a trouvé dans le système solaire n’est donc pas sans importance, et les travaux dans ce domaine se poursuivent activement, mais ce n’est pas ici le lieu d’en discuter. Les résultats accumulés depuis plusieurs décennies nous ont donné une assez bonne compréhension du rôle du chaos en météorologie, en turbulence hydrodynamique faible, dans la dynamique du système solaire, et pour quelques autres systèmes relativement simples. Qu’en est-il de la biologie, de l’économie, de la finance, ou des sciences sociales ? Il faut comprendre que les modélisations utiles dans le domaine du vivant sont assez différentes de celles qui nous satisfont pour des systèmes physiques simples. Les relations du hasard et la nécessité sont d’une autre nature. En fait le domaine du vivant est caractérisé par l’homéostasie qui maintient les organismes dans des conditions appropriées à la vie. L’homéostasie tend par exemple à maintenir la température de notre corps dans d’étroites limites. Elle supprime les fluctuations thermiques et est donc de nature antichaotique. La correction des fluctuations apparaît aussi au niveau du comportement individuel : un projet de voyage est maintenu même si une panne de voiture ou une grève fortuites obligent à changer de moyen de transport. Il s’agit ici de processus correctifs compliqués et qu’il est difficile de représenter par des modèles dynamiques simples auxquels on pourrait appliquer les techniques de la théorie du chaos. Clairement, de petites causes peuvent avoir de grands effets dans la vie de tous les jours, mais aux mécanismes causateurs de chaos s’ajoutent des mécanismes correcteurs, et il est difficile de débrouiller la dynamique qui en résulte. Dans le domaine de l’économie, de la finance ou de l’histoire, on voit aussi que des causes minimes peuvent avoir des effets importants. Par exemple une fluctuation météorologique peut causer la sécheresse dans une région et livrer sa population à la famine. Mais des mécanismes régulateurs effaceront peut-être l’effet de la famine, et l’histoire poursuivra son cours majestueux. Peut-être, mais ce n’est pas certain. Une guerre obscure en Afghanistan a précipité la chute du colossal empire Soviétique. Cette guerre obscure a concouru avec de nombreuses autres causes obscures à miner un empire devenu plus instable qu’on ne le pensait. En fait nous vivons tous dans un monde globalement instable : la rapidité des transports, la transmission presque instantanée de l’information, la mondialisation de l’économie, tout cela améliore peut-être le fonctionnement de la société humaine, mais rend aussi cette société plus instable, et cela à l’échelle de la planète. Une maladie virale nouvelle, ou un virus informatique, ou une crise financière font sentir leurs effets partout et immédiatement. Aujourd’hui comme hier le futur individuel de chaque homme et chaque femme reste incertain. Mais jamais sans doute jusqu’à présent l’imprédictibilité du futur n’a affecté aussi globalement notre civilisation tout entière.

 

  VIDEO       CANAL  U         LIEN

 
 
 
initiation musicale toulon   EINSTEIN AUJOURD'HUI
  initiation musicale

 

 

 

 

 

 

EINSTEIN AUJOURD'HUI


Parce qu'il est universellement célèbre, tout le monde croit connaître Einstein. Les physiciens, à cet égard, ne font pas exception à la règle. On va répétant à l'envie les mêmes lieux communs sur l'effet qu'ont eu les découvertes d'Einstein sur le cours de la physique, sur la manière dont il est parvenu à établir sa théorie, ou plutôt ses théories. Pire : on continue à enseigner la physique d'avant Einstein, la physique “classique” comme s'il n'avait pas modifié le point de vue que les physiciens portent dans leur pratique quotidienne sur leur propre discipline. Dans cette conférence, je tenterai de replacer l'apport d'Einstein dans le contexte de la fin du dix-neuvième siècle — ce qui, inévitablement m'amènera à parler des contributions de Poincaré et Lorentz à la théorie dite de la relativité restreinte : Einstein n'est ni cet extra-terrestre venu révolutionner la physique presque malgré elle que l'on a trop souvent dépeint, ni cet imposteur que certains briseurs d'idoles aimeraient faire descendre de son piédestal usurpé. Je soutiendrai la thèse que c'est sur la question des “principes”, leur définition, leur nécessité et leur force de contrainte que, d'un point de vue épistémologique, l'intervention d'Einstein dans la physique s'est principalement fait sentir.

Texte de la 577 e conférence de l'Université de tous les savoirs prononcée le 20 juin
2005
Par Françoise Balibar: « Einstein aujourd'hui »


On célèbre en cette année 2005 le centenaire de ce qu'il est convenu d'appeler l'annus mirabilis d'Einstein. Année miraculeuse en effet, puisque Einstein, alors âgé de 26 ans, publia cinq articles qui tous, à des degrés divers, ont bouleversé le cours de la physique. Le premier en date, paru en mars 1905, est le seul qu'Einstein lui-même ait qualifié de « révolutionnaire » ; il y explique que dans certaines situations expérimentales, la lumière que tout le monde considère comme une onde, sur le modèle des rides qui se propagent à la surface de l'eau, doit plutôt être assimilée à un ensemble de grains d'énergie - ce que plus tard, en 1922, on appellera des photons -- autrement dit des grains de lumière qui sillonnent l'espace.
A la fin du mois de juin de cette même année, Einstein envoie un deuxième article à la prestigieuses revue allemande Annalen der Physik, intitulé « Electrodynamique des corps en mouvement » -- titre devenu ésotérique mais qui « parlait » aux physiciens contemporains car c'était une question largement débattue (j'y reviendrai). Cet article, publié en septembre, n'est autre que l'article fondateur de la théorie einsteinienne de la relativité restreinte - théorie qui, prolongée en 1916 par celle de la relativité générale, a rendu son auteur célèbre, au point que son nom est désormais associé au mot « relativité ». Un troisième article, paru peu de temps après le précédent, en est une sorte de post-scriptum de deux pages qui se termine, non pas par la trop fameuse formule E = m c2, mais par la véritable expression de l'équivalence entre masse et énergie : DE = Dm c2 -- le symbole D désignant, de façon conventionnelle en physique, la variation d'une grandeur - en l'occurrence, l'énergie d'un système physique et sa masse : à toute variation de la masse d'un système correspond une variation de son contenu énergétique, et inversement.
Et de trois (articles). Entre-temps, toujours en 1905, Einstein avait publié un quatrième article, dont on parle relativement peu mais qui a eu une importance historique énorme ; il s'agit d'une étude portant sur le mouvement brownien (mouvement désordonné de particules en suspension, observé au microscope pour la première fois par le biologiste Brown -- d'où son nom -- que plus trivialement chacun a pu admirer dans une forêt lorsqu'un rayon de soleil passe entre les arbres et que l'on voit danser des grains de pollen dans la lumière. Dans cet article, Einstein proposait d'expliquer ce mouvement désordonné de particules relativement grosses (« visibles», à l'Sil nu ou au microscope) comme résultant du choc de ces grains sur des particules beaucoup plus petites, les atomes (« invisibles » à l'époque, puisque ce n'est que dans les années 1980 qu'on a pu les observer, de façon indirecte). La relation établie par Einstein dans cet article ayant été vérifiée expérimentalement par Jean Perrin quelques années plus tard, les travaux conjugués d'Einstein et Perrin apparurent alors comme la preuve, indirecte évidemment, de l'existence des atomes. Il n'est pas inutile de rappeler -- tant on a peine à le croire aujourd'hui -- qu'il y a cent ans, certains physiciens, et non des moindres, niaient encore l'existence des atomes ; on parlait couramment d' « hypothèse atomique », pour souligner que les atomes n'étaient qu'une vue de l'esprit. C'est cette position sceptique que les travaux d'Einstein et de Perrin ont rendue intenable ; depuis, la réalité atomique ne fait plus de doute.
Quant au cinquième article publié par Einstein en 1905, c'est d'une certaine façon le plus fondamental, puisque c'est sur les résultats qui y sont exposés que s'appuient les quatre autres (plus ou moins directement). Il s'agit de son travail de thèse (25 pages, chose impensable aujourd'hui où un minimum de 300 pages est requis pour la moindre thèse), dans lequel il développait une nouvelle manière de considérer les liens entre les niveaux microscopique (celui des atomes) et macroscopique (à notre échelle, cette échelle incluant les choses vues au microscope). Cette méthode n'était pas entièrement originale, même si Einstein croyait faire Suvre de novateur ; mais elle allait à l'encontre des idées reçues - raison pour laquelle, il avait eu des démêlés avec son directeur de thèse.

***
Je l'ai déjà dit, l'article de mars 1905 est sans conteste le plus « révolutionnaire ». On peut même soutenir que cet article, en proposant de la lumière une conception radicalement nouvelle, a mis Einstein sur la voie de sa théorie de la relativité restreinte (article de septembre). C'est du moins la thèse que je vais défendre ici ; ce qui, m'amènera à préciser en quoi la théorie de la relativité restreinte d' Einstein diffère de celle élaborée par d'autres physiciens plus chevronnés, Lorentz et Poincaré.
L'article que publie Einstein en mars 1905 porte le titre « Sur un point de vue heuristique concernant l'émission et la production de lumière ». Il est rare de voir figurer l'adjectif « heuristique » (« qui sert à la découverte » indique le Robert de poche) dans un texte scientifique, encore plus rare dans le titre d'un tel texte. La physique (la science) moderne est plus positive que cela : aujourd'hui, il n'est ni concevable ni convenable de prendre la plume pour indiquer une éventuelle piste de recherche, développer un « point de vue » ; on préfère généralement « proposer une hypothèse » ; la physique n'est ni un jeu de pistes ni une affaire de point de vue. Il est rare aussi qu'un article scientifique commence par des considérations philosophiques, même triviales, du genre : « la théorie physique, telle qu'elle a été développée jusqu'à présent est marquée par une profonde division entre continu et discontinu ». C'est pourtant de cette division que prend acte Einstein dans les premières lignes de son article. Division entre d'une part, une physique dont les concepts relèvent du discontinu -- ceux de particule, trajectoire, position implicitement « ponctuelle » sur cette trajectoire à un instant donné --, qui rend compte de la matière pondérable, « matérielle », constituée d' « atomes » ou, comme l'on disait alors, de « molécules » (la différence entre atomes et molécules n'étant pas encore bien établie) et d'autre part, une physique dont les concepts relèvent du continu -- onde, champ, emplissant tout l'espace à un instant donné, se propageant de façon « frontale », comme une vague déferlant sur une plage (en Anglais onde et vague se disent de la même façon : wave) --, qui rend compte de cette autre partie du monde physique qu'est la lumière, impalpable, impondérable. Or, poursuit Einstein, chacun peut constater que la lumière est émise et absorbée par la « matière ». La théorie actuelle, dans la mesure où elle décrit le monde à l'aide de concepts totalement incompatibles entre eux (le discontinu et le continu sont des notions antithétiques) n'est pas outillée pour rendre compte de ce fait pourtant fondamental : la production et l'absorption de lumière par la matière, la formation de continu à partir de discontinu, et inversement l'absorption du continu dans du discontinu.
Arrêtons-nous un instant pour apprécier à sa juste valeur le « culot » (mais peut-être vaudrait -il mieux dire, la maîtrise intellectuelle) d'un jeune homme de 26 ans -- diplômé certes (Einstein sort de l'Ecole Polytechnique de Zürich, la meilleure « grande école » européenne à l'époque, n'en déplaise à « notre » Ecole Polytechnique) mais pour l'heure employé au Bureau des Brevets de Berne --, envoyant pour publication un article au titre si peu conforme, où il se paie le luxe de développer des considérations philosophiques, que l'on serait tenté de qualifier de simplistes si elles ne touchaient pas juste. Comme quoi un peu de philosophie, même naïve, vaut mieux que force ni que rage calculatoires.
S'il est vrai que l'on ne fait pas de continu avec du discontinu (et inversement), il n'en reste pas moins qu'en ce qui concerne la matière (mais uniquement elle), certains physiciens -- ceux précisément qui sont convaincus que la matière au niveau microscopique est faite d' « atomes » (et Einstein, à l'Ecole Polytechnique, a été formé par de tels physiciens) -- ont développé à la fin du XIXème siècle des techniques statistiques qui, prenant appui sur l'extrême grandeur du nombre d' « atomes » (ou « molécules ») contenus dans un gramme de matière, permettent de remonter du niveau microscopique (discontinu) au niveau macroscopique (à notre échelle où la matière semble continue) ; et ce, dans une branche bien particulière de la physique, la thermodynamique.
La thermodynamique, science de la chaleur, étudie les transformations que subit la matière lorsque la température qu'on lui impose varie, et ceci, indépendamment de sa constitution intime (atomique ou autre). La mécanique statistique, mécanique en ceci qu'elle traite de particules (puisqu'elle repose sur l' « hypothèse atomique » concernant la matière) et statistique en ce qu'elle applique les lois des grands nombres, a été développée à la fin du siècle, par Maxwell en Grande- Bretagne et Boltzmann dans le monde germanique. Pour ceux qui ne demandent qu'à être convaincus, elle est la preuve de la « réalité » des atomes (bien avant l'article d'Einstein sur le mouvement brownien), car elle permet de retrouver les principaux résultats de la thermodynamique, sur la base précisément de l'hypothèse atomique. On ne saurait trop insister sur l'importance d'un tel résultat - qui a fortement impressionné l'étudiant Einstein lorsqu'on le lui a enseigné ( Boltzmann, der grossartig, le magnifique, note-t-il à peu de temps de là). Au point que c'est sur les traces de Boltzmann qu'Einstein ose son premier pas théorique audacieux : il décide d'appliquer à la lumière les méthodes statistiques qui se sont révélées si fructueuses dans le cas de la matière. La démarche est audacieuse car elle suppose implicitement que ce qui vaut pour la matière vaut pour la lumière, autrement dit que matière et lumière sont régies par les mêmes principes théoriques. On voit bien que ce qui est en jeu ici, c'est l'unité de la Nature.


Einstein entreprend donc de comparer du point de vue de la mécanique statistique deux situations qu'il suppose analogues, à savoir d'une part, des « molécules » enfermées dans une boîte portées à une certaine température (ce qu'on appelle traditionnellement « un gaz parfait ») et d'autre part, du rayonnement lumineux, également enfermé dans une boîte et porté à une certaine température (dénommé « corps noir »). Plus techniquement, il choisit de calculer, dans l'une et l'autre situation, la variation d'entropie (DS) lors d'une réduction du volume de la boîte (de V0 à V), à température constante. Or l'entropie est précisément une de ces grandeurs thermodynamiques, exprimables à l'aide des grandeurs thermodynamiques macroscopiques (énergie, volume, température etc.) dont la mécanique statistique fournit (dans le cas de la matière) une interprétation (et une formulation) en termes microscopiques, faisant intervenir, en particulier, le nombre (N) des « molécules » du système considéré. Après avoir calculé la variation d'entropie, par la méthode statistique pour les « molécules » et par la thermodynamique pour le rayonnement, Einstein constate que les expressions ont la même forme mathématique, en logarithme (noté ln), dans les deux cas (gaz parfait et corps noir) et, plus intéressant, que la place qu'occupe N le nombre de « molécules » dans la formule relative à la matière est occupée dans le cas de la lumière par le rapport de deux grandeurs : l'énergie totale du « corps noir » (E ) et une autre grandeur (e) liée à la fréquence du rayonnement.
Einstein accomplit alors un deuxième geste audacieux, dont la force heuristique tient à ce qu'il est parfaitement conforme à la nature du rapport aux mathématiques qui, depuis Galilée, constitue la physique comme mathématisation de la Nature. Einstein, en effet, conclut de l'identité des places occupées dans une même formule mathématique par deux quantités (un nombre dans un cas, un rapport entre deux grandeurs, dans l'autre) à l'identité de nature physique de ces deux quantités. Or le nombre N qui figure dans la formule du gaz parfait n'est pas n'importe quel nombre, c'est un nombre de « molécules », donc un nombre entier. Conclusion d'Einstein : le rapport E/e qui occupe la même place dans la formule relative à la lumière doit nécessairement être une grandeur de même nature physique, donc, lui aussi, un nombre entier. Autrement dit : l'énergie macroscopique du rayonnement E est structurée en grains et e, la quantité qui figure en dénominateur du rapport en question est l'énergie individuelle de chacun de ces grains. De l'identité des places occupées dans une formule mathématique, circonstance que d'autres auraient peut-être considérée comme fortuite, sans signification, ne nécessitant pas d'être interprétée, Einstein, convaincu que les mathématiques « parlent le langage de la nature », déduit une propriété fondamentale de la structure de la réalité : la lumière est granulaire, quantifiée comme l'on dit.


DS = variation de l'entropie du système lorsque le volume de la boîte passe de V0 à V
Dans le cas de la matière (gaz parfait constitué de N « molécules »), N est entier :

DS = k ln (V/ V0)N
Dans le cas du rayonnement (corps noir d'énergie totale E) :

DS = k ln (V/ V0)E/e
où e est une quantité que le calcul indique être proportionnelle à la fréquence du rayonnement.

L'identité de forme mathématique implique que
E/ e = nombre entier.
L'énergie totale du rayonnement contenu dans le « corps noir » est la somme d'un nombre de quanta (mot qui en allemand, comme en latin, signifie une quantité unité) d'énergie e :
E = (Nombre entier) e
.
Le degré de technicité mathématique requis par une telle « découverte » est nul. En revanche, ce que l'on y voit fonctionner à l'état pur, c'est le fameux « sens physique », toujours invoqué, jamais précisément décrit. De cet exemple, on serait tenté de conclure que le « sens physique » n'est que l'expression d'une profonde conviction intime, quasi inconsciente, comme « une pensée de derrière la tête » toujours active, en l'occurrence l'idée que le livre de la Nature est écrit en termes mathématiques. On peut aussi remarquer que le « sens physique », une fois exprimé, paraît incontestable, il est porteur de consensus ; c'est en quelque sorte le « common sense » des physiciens, ce sur quoi ils s'accordent. Einstein, malgré son jeune âge, le dit clairement quand, commentant « sa » relation de quantification de l'énergie lumineuse, il se déclare ouvert à la discussion, tout en notant que l'identité de structure des formules, qu'il a mise en évidence ne peut, en tout état de cause, rester sans explication : une identité mathématique correspond nécessairement à une propriété de la réalité physique ; et cela, personne ne le lui contestera.


****

Mais revenons à Einstein, en ce début d'année 1905. Il n'a pas réussi à obtenir un poste universitaire et il gagne sa vie en examinant des brevets durant les heures de bureau. Situation qu'il décrira par la suite comme idéale : un poste universitaire lui aurait laissé moins de loisirs pour réfléchir à des questions qui le tarabustent depuis l'âge de quinze ans et qui se trouvent être aussi au centre des préoccupations des physiciens plus âgés, engagés dans la vie professionnelle. Ces questions portent sur la nature de la lumière (en ce sens, son premier article s'y rattache), plus précisément au rapport entre lumière et mouvement. Le mouvement est une catégorie que la physique a redéfini à sa naissance (ou sa re-naissance au début du XVIIème siècle) comme le déplacement d'un corps (conçu comme un assemblage de particules, relevant du discontinu donc) d'une position d'espace à une autre, sans que le corps en question soit altéré. La catégorie de mouvement ne s'applique pas, en principe, à la lumière. Pourtant, la lumière, pensée comme une onde qui se propage, dont le « front » atteint au fur et à mesure que le temps s'écoule des régions de l'espace de plus en plus éloignées, se « déplace » elle aussi. Ce qui amène à définir une vitesse-de-propagation, qu'il est tentant d'abréger en « vitesse » tout court, terme qui, en toute rigueur, devrait être réservé au mouvement des corps matériels et qui se trouve ici appliqué à la lumière, immatérielle en quelque sorte. Le problème auquel songe Einstein depuis son adolescence est le suivant : comment verrais-je le monde si je me déplaçais (en tant que corps matériel, évidemment) à une vitesse égale à la « vitesse » de la lumière ? Autrement dit : comment se combinent la vitesse d'un corps et la « vitesse » de la lumière » ? S'ajoutent-elles algébriquement comme c'est le cas pour deux vraies vitesses (celles de deux corps matériels) ? A quelle « vitesse » arriverait dans mon Sil une onde lumineuse émise par un objet vers lequel je me dirigerais moi-même avec une vitesse égale à la « vitesse » de la lumière ?
A cette question, la physique de la fin du XIXème siècle, en l'espèce la théorie électromagnétique de la lumière élaborée par Maxwell, a déjà apporté une réponse... dont le seul inconvénient est qu'elle induit une myriade de questions. Cette réponse est la suivante : la lumière arriverait dans l'Sil du jeune Einstein avec la même « vitesse » que s'il était immobile. Ce qui revient à dire que la lumière jouit d'une propriété pour le moins bizarre : sa « vitesse » reste la même quand elle est combinée à n'importe qu'elle vitesse vraie (celle d'un corps). En complet désaccord avec la manière dont se comportent en général les vitesses (vraies) qui s'ajoutent (algébriquement) : si, dans un train, je me déplace à la vitesse de 4 km/h dans le sens du mouvement du train, lequel roule à une vitesse de 150 km/h, ma vitesse par rapport au remblai des voies est de 154 km/h.
Dans la théorie de Maxwell, cette singularité de la « vitesse » de la lumière s'explique par la nature même de la lumière. La lumière est un champ électromagnétique. Dire qu'elle est un « champ », c'est dire qu'elle est représentée par une grandeur définie en tout point de l'espace et à chaque instant. Dire que ce champ est « électromagnétique », c'est dire qu'il est constitué de la combinaison de deux champs, électrique et magnétique, qui non seulement sont indissociables mais en outre s'engendrent l'un l'autre au cours du temps, assurant ainsi la propagation de l'ensemble dans l'espace au cours du temps ... à la « vitesse » de la lumière (généralement notée c). Mais un champ, qu'est-ce que c'est ? Pour Maxwell, il est clair qu'un champ désigne nécessairement l'état d'un milieu matériel. Ceci par analogie avec la théorie du son où ce qui se propage est la compression des couches d'air ébranlées de proche en proche ; le champ est alors une représentation de l'état de compression du milieu que constitue l'air. Pour Maxwell, un champ ne peut pas se propager dans le vide (l'exemple du son est à cet égard probant) ; il lui faut nécessairement un milieu de propagation. A ce milieu, Maxwell donne, dans le cas de la lumière, le nom d' « éther luminifère », raccourci en « éther ». La « vitesse » de la lumière est alors la vitesse de propagation dans l'éther. Que cette vitesse soit absolue (elle n'est pas modifiée si on la combine avec une autre) reste à comprendre.
L'« explication » donnée par la physique de la fin du siècle pose, de façon générale, plus de questions qu'elle n'en résout, selon la formule consacrée. Elle est en effet en contradiction flagrante avec ce que l'on commence à appeler « le principe de relativité » (je l'analyserai dans un instant), lequel ne date pas d'hier puisque c'est sur ce principe que s'est élevée la physique galiléo -newtonienne, physique des corpuscules, physique de la matière. L'interrogation déjà signalée plus haut (à propos de l'application de la mécanique statistique à la lumière) ressurgit ici : ce qui vaut pour la matière vaut-il, oui ou non, pour la lumière ? La lumière doit-elle, comme la matière, être soumise au principe de relativité ? Pour Einstein, comme pour la plupart des physiciens et souvent pour des raisons diverses, la réponse est oui.
Le moment est venu d'énoncer ce principe. Il définit une classe de « référentiels » « équivalents ». Deux mots qui méritent d'être expliqués. « Référentiels » désigne de façon raccourcie un « corps de référence » (matérialisant un trièdre trirectangle, généralement) assorti d'une horloge - ce qui permet de définir un système de coordonnées spatio-temporelles (3 d'espace et une de temps). L' « équivalence » dont il s'agit porte sur les « lois de la nature ». (Ce n'est pas le lieu de disserter sur ce que sont les lois de la nature et pourquoi elles portent le nom de « lois » ; d'autant que les choses se tiennent : le principe de relativité contribue à définir ce qu'il faut entendre par « lois de la nature ».) Dire que deux référentiels sont équivalents, c'est dire que les lois de la nature y sont les mêmes. Le principe de relativité énonce qu'il existe bel et bien des référentiels de ce type, formant une classe d'équivalence (vis-à-vis des lois de la nature). Mathématiquement, cela signifie qu'une même loi de la nature prend la même forme dans tous les référentiels de la classe en question. Tel est l'énoncé le plus général du principe de relativité. La relativité dite restreinte correspond à la restriction suivante : les référentiels équivalents se déduisent les uns des autres par une opération de translation rectiligne uniforme. En termes simples, le principe de relativité restreinte énonce que les lois de la physique sont les mêmes dans tous les référentiels qui sont en translation rectiligne uniforme les uns par rapport aux autres. En termes mathématiques, cela revient à dire que, lors de la transformation des coordonnées spatio-temporelles attachées à un référentiel en celles attachées à un autre en translation rectiligne uniforme par rapport au premier, la forme mathématique des lois de la nature reste inchangée. En termes concrets, le principe de relativité se traduit par le fait que le café, qu'une hôtesse de l'air sert à bord d'un avion ayant pris son allure de croisière coule de la même façon, de la cafetière dans les tasses, qu'au sol : les lois de l'écoulement du café sont les mêmes dans les deux référentiels « avion à sa vitesse de croisière » (vitesse mesure par rapport au sol) et « sol », en translation rectiligne uniforme l'un par rapport à l'autre à la vitesse de vol de l'avion.
Pour les physiciens du début du XXème siècle, le principe de relativité entre en contradiction avec l'existence de l'éther, pourtant indispensable, croit-on, à la théorie de la lumière de Maxwell. En effet, le principe de relativité énonce qu'il existe une classe de référentiels équivalents, et non pas un seul référentiel, dans lequel peuvent être formulés les lois de la nature de façon indifférente -- écartant par là même la possibilité que l'éther, défini comme le seul référentiel dans lequel les équations de Maxwell ont leur forme « canonique ».
En 1905, ce problème hante la physique depuis déjà plusieurs décennies, sous le nom d' « l'électrodynamique des corps en mouvement ». ( on se souvient que c'est le titre de l'article que publie Einstein ne septembre 1905). Dans cette appellation, « électrodynamique » indique que dans la théorie de Maxwell, la lumière est un champ électromagnétique, et l'expression « corps en mouvement », signale qu' un problème se pose dès lors que l'on essaie de décrire le champ produit par un corps émetteur qui se déplace dans l'éther : les équations de Maxwell, écrites dans le référentiel de l'éther, ne gardent pas la même forme mathématique lors du passage aux référentiels en translation uniforme par rapport à lui, qui pourtant devraient lui être équivalents.
On voit bien que dans cette affaire, c'est l'éther qui pose un problème et même qui le crée : si les équations de Maxwell ne devaient pas être écrites d'abord dans l'éther, seul référentiel où elles soient valables, les choses seraient beaucoup plus simples. L'éther embarrasse. Pourtant, l'argument de Maxwell selon lequel le champ ne se propage pas dans le vide et qu'il lui faut pour cela un support, un milieu matériel, empêche de s'en débarrasser. Le désir de le supprimer purement et simplement est exacerbé par le fait que de ce milieu imaginaire, rien n'a pu à ce jour être déterminé expérimentalement, ni sa densité, ni son élasticité, ni aucune propriété qui pourrait lui donner un peu de corps. Sa seule propriété physique, c'est d'être immobile...

***
J'ai décrit un peu longuement la situation dans laquelle se trouvait la physique, plus exactement, la théorie de la lumière, pour montrer qu'en 1905 Einstein s'attaque à un problème qui a déjà une histoire. Comme chacun a pu le constater en lisant la presse, cette année 2005 a été l'occasion de rouvrir un dossier récurrent, celui de la « véritable » paternité de la théorie de la relativité restreinte. Les faits sont les suivants, assez étonnants, il faut le dire. Einstein, alors en Suisse, envoie à Berlin, le 30 juin 1905, le manuscrit de son article « Electrodynamique des corps en mouvement » qui ne sera publié qu'en septembre. Trois semaines auparavant, le 5 juin, Poincaré a présenté à l'Académie des Sciences de Paris une communication dans laquelle il indique avoir résolu le problème des transformations qui laissent invariantes les équations de Maxwell, transformations dont il attribue à Lorentz le mérite, bien qu'il ait dû corriger les relations proposées par Lorentz. Poincaré rédige l'article correspondant en juin/juillet et l'envoie pour publication en juillet 1905 à la revue du Circolo matematico di Palermo ; il paraîtra en janvier 1906. Or, et c'est bien l'origine de toutes les controverses, la forme de ces transformations que Poincaré a baptisées « de Lorentz » mais qui sont de lui, est exactement celle que donne Einstein dans son article envoyé en juin, paru en septembre.
Un auteur, français et polytechnicien comme Poincaré, a imaginé une histoire assez plaisante visant à réhabiliter Poincaré, l'Ecole Polytechnique et la France, victimes une fois de plus de la vindicte allemande ; histoire selon laquelle Hilbert et Planck, deux grosses pointures de la science allemande, furieux évidemment d'avoir été doublés sur le poteau par leur vieux rival Poincaré, se seraient avisés de l'existence d'un jeune ambitieux, en mal de poste universitaire, rongeant son frein dans un bureau à Berne et lui auraient proposé de rédiger l'article qu'ils avaient « raté » et qu'ils ne pouvaient pas décemment publier sous leur nom, en échange d'un poste à l'université Berlin, rien de moins.


L'histoire est plaisante ...bien que déplaisante par l'exhibition de sentiments revanchards que l'on croyait ne plus jamais avoir à supporter. Elle ne tient pas debout - ne serait-ce que parce qu'il faut plus de 25 jours pour prendre connaissance à Berlin d'une communication orale faite à Paris, décider de la stratégie à adopter en réponse, retrouver le jeune ambitieux prêt à tout pour arriver, écrire à la main un article de 30 pages et le faire recopier par le jeune ambitieux.
Mais elle ne tient pas surtout parce qu'on a affaire à deux théories distinctes. Certes, les relations (que l'on appelle depuis « de Lorentz ») proposées par Poincaré ont exactement la même forme que celles qui se trouvent dans le mémoire d'Einstein. Le contraire aurait été étonnant, ou inquiétant. Mais peut-on conclure de l'identité de forme à l'identité de contenu ? Ont-elles la même signification dans les deux cas ? Absolument pas. Comme le montre d'ailleurs le fait suivant récemment signalé par le physicien Thibault Damour : Poincaré n'a pas « vu » que de ces relations découlait l'un des résultats les plus significatifs de la théorie einsteinienne de la relativité : la « dilatation des temps ».
Au delà des résultats, il est un point sur lequel Einstein et Poincaré diffèrent profondément ; c'est celui de l'existence de l'éther. Poincaré, qui fondamentalement souhaite pouvoir s'en passer se voit contraint, faute d'avoir les arguments suffisants pour cela, de s'en accommoder. Il garde l'éther comme référentiel dans lequel doivent être écrites les équations de Maxwell et s'arrange pour lui faire jouer un rôle muet. En effet, ayant mis en évidence la structure de groupe des transformations « de Lorentz », il établit que les équations de Maxwell gardent la même forme lors du passage d'un référentiel R à un autre équivalent R', en décomposant ce passage en deux : du référentiel R à celui de l'éther, et ensuite de l'éther à l'autre référentiel R'. Ainsi donc, la théorie de Poincaré est une théorie avec éther. Elle résout la question que se posait Poincaré : trouver les transformations qui laissent invariantes les équations de Maxwell et les qualifient ainsi comme « lois de la Nature », obéissant au principe de relativité. Mais elle ne résout pas la question de l'éther, loin de là
L'objectif d'Einstein est différent. C'est là qu'intervient l'article de mars, celui qu'il disait lui-même « révolutionnaire ». Ayant trouvé des arguments qui l'avaient convaincu de la possibilité pour la lumière d'être de nature granulaire et non ondulatoire (relevant du discontinu plutôt que du continu), Einstein avait une longueur d'avance sur ses contemporains dans l'exécution du meurtre annoncé de l'éther. Il avait de bons arguments pour penser que l'éther était superflu (rappelons que la nécessité de l'éther était liée à la propagation d'une onde). Aussi cherchait-il, avant tout, le moyen de rebâtir l'électrodynamique des corps en mouvement en se passant d'emblée de l'éther. C'est ce qu'il a fait en mettant l'accent non pas sur la propagation (que voudrait dire le mot « propagation » si la lumière était vraiment faite de quanta ? rien), mais sur l'idée de vitesse, rapport entre un intervalle d'espace et un intervalle de temps. De ce que la « vitesse » de la lumière était la même dans tous les référentiels, en contradiction avec l'addition algébrique des (vraies) vitesses, il a conclu que cette « vitesse » n'en était pas une ; il lui a donné un nouveau statut : celui de constante structurelle liant l'espace et le temps de la physique, grandeur invariante par définition, gardant la même valeur dans tous les référentiels. On sait comment il a alors transformé les idées fondamentales de temps et d'espace et bâti sa théorie.


Pour terminer, je voudrais insister sur la différence entre les perspectives adoptées par Einstein et par Poincaré (et Lorentz). Poincaré et Lorentz ont consacré trente ans de leur vie à bâtir une théorie électromagnétique libre, autant que possible, de contradiction. Ils y sont formellement arrivés. Einstein, avait trente ans de moins et, en 1905, il n'avait encore investi aucun effort dans cette direction. De plus, Einstein appartenait à l'aire culturelle allemande : il était enthousiaste des méthodes statistiques (il était devenu expert en la matière, grâce à son travail de thèse) ; c'est ce qui l'a mis sur la piste de la quantification de l'énergie lumineuse et lui a donné les arguments physiques qui lui permettaient d'affronter ceux, physiques également, qu'avait avancés Maxwell en faveur de l'éther ; c'est ce qui lui a permis de se placer sur le terrain même de Maxwell, celui de la physique. Einstein, contrairement à Lorentz et Poincaré, attachait de l'importance à l'éther ; bien qu'il ne se soit pas exprimé sur la question, on peut penser qu'au début de l'année 1905, Einstein ne considérait pas (comme le faisait Poincaré) que l'éther tomberait de lui-même, un jour (plus tard, une fois la théorie de Maxwell rendue invariante par changement de référentiel). Pour lui, il fallait commencer par se débarrasser de l'éther, c'est-à-dire s'en passer, de manière à le rendre superflu. A cet égard, d'avoir été formé à l'école statistique lui a rendu d'immenses services, comme j'ai tenté de le montrer en analysant l'article de mars.
On peut dire les choses autrement : Einstein, par sa formation, était enclin à chercher un passage du niveau microscopique au niveau macroscopique, du discontinu au continu ; Poincaré et Lorentz, eux, à force de critique des modèles mécanistes (dans lesquels on cherchait à rendre compte de la propagation de la lumière en termes de mouvements matériels) en étaient venus à se convaincre de la supériorité des théories du continu sur celles du discontinu. Significatif à cet égard est le titre donné par Poincaré à son article de Palerme: « La théorie de l'électron » ; Poincaré cherchait à construire le discontinu comme une accumulation spatiale d'énergie continue. L'ironie de l'affaire est que trente ans plus tard, Einstein lui aussi devait trouver un certain charme à cette idée, prêt à tout pour éviter la théorie quantique qu'il avait lancée mais qui avait pris un cours qui lui déplaisait.
COMMENTAIRES

AJOUTER UN COMMENTAIRE LIRE LES COMMENTAIRES
Georges 20/09/2014 04H04
Bonjour,
Merci à Françoise Balibar pour son exposé. J'ai appris en l'écoutant et lui en suit reconnaissant.
Je suis surpris dans sa conclusion (1:12:36), concernant le paradoxe EPR.
Je pensais (et suis sûr... :-) ) que l'expérience d'Aspect avait mis EN DEFAUT la position d'Einstein.
Elle explique que l'expérience d'Aspect a confirmé la position d'Einstein...!?
N'aurait-elle pas compris?
Merci pour votre réponse.
ffi 10/05/2012 03H41
Bof. Il suffit de comparer le mémoire de 50 pages de Poincaré de début juin 1905 et la publication d'Einstein du 30 juin 1905. Une démonstration complète et brillante de Poincaré, versus une vague métaphysique chez Einstein...

Mais il y a, il est vrai, une nuance de taille : Einstein éradique toute notion d'éther, alors que celui est central à la démonstration de Poincaré. Chez Poincaré, c'est le mouvement dans l'éther, qui, par effet d'advection, déforme le volume de la particule, contracte les longueurs, et explique donc l'échec de l'expérience de Michelson.

Poincaré admettait que l'hypothèse de l'éther était secondaire, mais précisait bien qu'il était préférable de la garder, sinon, cela "nuirait à la clarté de la théorie"...

L'inconvénient de supprimer l'éther, c'est que l'on supprime la cause elle-même, car, il n'y a pas de cause physique sans chose physique. Remplacer donc ainsi la cause physique en posant ses effets en tant qu'axiomes mathématiques fut une sacrée boulette et a fait perdre 1 siècle à la science.

Vivement que nos amis physiciens se réveillent de leur torpeur et cessent de confondre ainsi des spéculations métaphysiques avec la physique.

Cordialement

 

        VIDEO     canal U       LIEN

 
 
 
initiation musicale toulon   LES TROUS NOIRS ET LA FORME DE L'ESPACE
  initiation musicale

 

 

 

 

 

 

LES TROUS NOIRS ET LA FORME DE L'ESPACE


La théorie de la relativité générale, les modèles de trous noirs et les solutions cosmologiques de type " big-bang " qui en découlent, décrivent des espace-temps courbés par la gravitation, sans toutefois trancher sur certaines questions fondamentales quant à la nature de l'espace. Quelle est sa structure géométrique à grande et à petite échelle ? Est-il continu ou discontinu, fini ou infini, possède-t-il des " trous " ou des " poignées ", contient-il un seul feuillet ou plusieurs, est-il " lisse " ou " chiffonné " ? Des approches récentes et encore spéculatives, comme la gravité quantique, les théories multidimensionnelles et la topologie cosmique, ouvrent des perspectives inédites sur ces questions. Je détaillerai deux aspects particuliers de cette recherche. Le premier sera consacré aux trous noirs. Astres dont l'attraction est si intense que rien ne peut s'en échapper, les trous noirs sont le triomphe ultime de la gravitation sur la matière et sur la lumière. Je décrirai les distorsions spatio-temporelles engendrées par les trous noirs et leurs propriétés exotiques : extraction d'énergie, évaporation quantique, singularités, trous blancs et trous de ver, destin de la matière qui s'y engouffre, sites astronomiques où l'on pense les avoir débusqués. Le second aspect décrira les recherches récentes en topologie cosmique, où l'espace " chiffonné ", fini mais de topologie multiconnexe, donne l'illusion d'un espace déplié plus vaste, peuplé d'un grand nombre de galaxies fantômes. L'univers observable acquiert ainsi la forme d'un " cristal " dont seule une maille correspond à l'espace réel, les autres mailles étant des répliques distordues emplies de sources fantômes.

Texte de la 187e conférence de l’Université de tous les savoirs donnée le 5 juillet 2000.
Les trous noirs et la forme de l'espace
par Jean-Pierre Luminet

Introduction
La question de la forme de l’espace me fascine depuis que, adolescent, j’ai ouvert une encyclopédie d’astronomie à la page traitant de la théorie de la relativité générale d’Einstein. Il y était écrit que, dans la conception relativiste, l’espace-temps a la forme d’un mollusque. Cette image m’avait beaucoup intrigué, et depuis lors, je n’ai eu de cesse d’élucider les mystères implicitement attachés à ce « mollusque universel ». Lorsqu’ils contemplent un beau ciel nocturne, la plupart des gens n’ont d’yeux que pour le spectacle des étoiles, c’est-à-dire le contenu de l’univers. Or, on peut aussi s’émerveiller devant l’invisible contenant : l’espace n’est-il qu’un réceptacle vide et passif qui accueille les corps, ou bien peut-on lui attribuer une forme, une structure, une architecture ? Est-il plat, courbe, rugueux, lisse, cabossé, plissé, etc. ?
L’espace a-t-il une forme ?
Il est sans doute difficile à la plupart d’entre vous d’attribuer une forme à quelque chose d’aussi impalpable et d’abstrait que l’espace. Au cours des siècles, maintes conceptions philosophiques ont tenté de « donner chair » à l’espace en le considérant, par exemple, comme une substance éthérée qui, non seulement contient les corps matériels, mais aussi les imprègne et partage avec eux certaines de ses propriétés structurelles. Toutefois, pour le physicien, les questions sur la forme de l’espace ne sont pertinentes qu’en utilisant le langage des mathématiques, plus spécifiquement celui de la géométrie.
Quel est l’espace géométrique qui est susceptible de représenter l’espace physique ?
Le problème est plus compliqué qu’il ne semble à première vue. Certes, l’espace « immédiat » qui nous environne est correctement décrit par la géométrie euclidienne ordinaire. Mais l’espace microscopique (à très petite échelle) et l’espace cosmologique (à très grande échelle) en diffèrent profondément. À la question de la forme de l’espace, la physique actuelle donne donc des réponses différentes, selon quatre « niveaux » dépendant de l’échelle à laquelle on examine la structure de l’espace. Les niveaux « intermédiaires » 1 & 2 sont assez bien compris, les niveaux « extrêmes » 0 & 3 font l’objet de spéculations théoriques originales.
Niveau 1 : Géométrie (pseudo-) euclidienne
Champ d’application : mécanique classique, relativité restreinte, électrodynamique quantique
À l’échelle « locale », disons entre 10-18 centimètre (longueur actuellement accessible à l’expérimentation) et 1011 mètres (de l’ordre de la distance Terre - Soleil), la géométrie de l’espace physique se décrit très bien par celle de l’espace euclidien ordinaire. « Très bien » signifie que cette structure mathématique sert de cadre naturel aux théories physiques qui, comme la mécanique classique, la relativité restreinte et l’électrodynamique quantique, permettent d’expliquer correctement la quasi-totalité des phénomènes naturels. L’espace y est à trois dimensions, sans courbure. Dans la théorie relativiste, il est couplé au temps au sein d’une géométrie pseudo-euclidienne quadridimensionnelle plate, dite « espace-temps de Minkowski ».
Niveau 2 : Géométrie différentielle en espace (pseudo-) riemannien
Champ d’application : relativité générale, cosmologie
À l’échelle astronomique (système solaire, étoiles, galaxies, univers dans son ensemble), l’interaction dominante qui « sculpte » l’espace physique est la gravité. Celle-ci est décrite par la relativité générale, qui fait apparaître une structure non-euclidienne de l’espace-temps. La géométrie différentielle des variétés riemanniennes permet précisément de décrire de tels espaces courbes. Il y a de nombreuses modélisations possibles. Par exemple, à grande échelle, la courbure est relativement « douce » et uniforme. Les cosmologistes travaillent donc dans le cadre d’espaces à courbure constante. Au voisinage d’objets très compacts, la courbure peut au contraire varier fortement d’un point à l’autre. La géométrie de Schwarzschild est un exemple de modélisation de l’espace-temps physique autour d’un trou noir sphérique.
Niveau 0 : Géométrie multidimensionnelle, géométrie non-commutative, etc.
Champ d’application : théories d’unification, supercordes, gravité quantique
La description de l’espace à l’échelle microscopique (entre 10-33 centimètre et 10-18 centimètre) est liée au plus grand enjeu de la physique actuelle : l’unification des interactions fondamentales. Celle-ci tente de marier deux points de vue extrêmement différents : celui de la mécanique quantique, décrivant les interactions en termes de champs, et celui de la relativité, décrivant la gravité en termes de courbure.
Aucune théorie de « gravité quantique » satisfaisante n’a vu le jour, mais plusieurs scénarios sont étudiés. Dans tous les cas, les conceptions géométriques usuelles sur l’espace et le temps sont bouleversées. Par exemple, la théorie des supercordes introduit des dimensions spatiales supplémentaires ; la géométrie non-commutative décrit un espace-temps granulaire et « flou » ; la géométrodynamique quantique conçoit l’espace-temps comme un océan bouillonnant d’énergie, agité de « vagues » (les fluctuations quantiques du vide) et ponctué « d’écume » (les univers-bulles).
Niveau 4 : Topologie, espaces « chiffonnés »
Champ d’application : structure globale de l’Univers, topologie cosmique
La question de la forme globale de l’espace (à une échelle supérieure à 1025 mètres) pose des problèmes géométriques spécifiques ne relevant plus seulement de la courbure, mais de la topologie de l’espace-temps. Celle-ci n’est incorporée ni dans la relativité générale, ni dans les approches unificatrices de la physique des hautes énergies. Pour reprendre l’image pittoresque du « mollusque universel », il ne s’agit plus de savoir s’il possède des bosses ou des creux, mais de savoir s’il s’agit d’un escargot, d’une limace ou d’un calmar.
Une nouvelle discipline est née il y a quelques années : la topologie cosmique, qui applique aux modèles cosmologiques relativistes les découvertes mathématiques effectuées dans le domaine de la classification topologique des espaces.
La suite de la conférence s’attachera exclusivement à la description du niveau 2 dans le contexte des trous noirs, et du niveau 4 dans le contexte des modèles d’univers chiffonnés.

Les trous noirs
Un vieux conte persan dit :
« Un jour, les papillons tiennent une vaste assemblée parce qu’ils sont tourmentés par le mystère de la flamme. Chacun propose son idée sur la question. Le vieux sage qui préside l’assemblée dit qu’il n’a rien entendu de satisfaisant, et que le mieux à faire est d’aller voir de près ce qu’est la flamme.
Un premier papillon volontaire s’envole au château voisin et aperçoit la flamme d’une bougie derrière une fenêtre. Il revient très excité et raconte ce qu’il a vu. Le sage dit qu’il ne leur apprend pas grand chose.
Un deuxième papillon franchit la fenêtre et touche la flamme, se brûlant l’extrémité des ailes. Il revient et raconte son aventure. Le sage dit qu’il ne leur apprend rien de plus.
Un troisième papillon va au château et se consume dans la flamme. Le sage, qui a vu la scène de loin, dit que seul le papillon mort connaît le secret de la flamme, et qu’il n’y a rien d’autre à dire. »
Cette parabole préfigure le mystère des trous noirs. Ces objets célestes capturent la matière et la lumière sans espoir de retour : si un astronaute hardi s’aventurait dans un trou noir, il ne pourrait jamais en ressortir pour relater ses découvertes.

Les trous noirs sont des astres invisibles
Le concept d’astre invisible a été imaginé par deux astronomes de la fin du XVIIIe siècle, John Michell (1783) et Pierre de Laplace (1796). Dans le cadre de la théorie de l’attraction universelle élaborée par Newton, ils s’étaient interrogés sur la possibilité qu’il puisse exister dans l’univers des astres si massifs que la vitesse de libération à leur surface puisse dépasser la vitesse de la lumière. La vitesse de libération est la vitesse minimale avec laquelle il faut lancer un objet pour qu’il puisse échapper définitivement à l’attraction gravitationnelle d’un astre. Si elle dépasse la vitesse de la lumière, l’astre est nécessairement invisible, puisque même les rayons lumineux resteraient prisonniers de son champ de gravité.
Michell et Laplace avaient donc décrit le prototype de ce qu’on appellera beaucoup plus tard (en 1968) un « trou noir », dans le cadre d’une autre théorie de la gravitation (la relativité générale). Ils avaient cependant calculé les bons « ordres de grandeur » caractérisant l’état de trou noir. Un astre ayant la densité moyenne de l’eau (1g/cm3) et une masse de dix millions de fois celle du Soleil serait invisible. Un tel corps est aujourd’hui nommé « trou noir supermassif ». Les astronomes soupçonnent leur existence au centre de pratiquement toutes les galaxies (bien qu’ils ne soient pas constitués d’eau !). Plus communs encore seraient les « trous noirs stellaires », dont la masse est de l’ordre de quelques masses solaires et le rayon critique (dit rayon de Schwarzschild) d’une dizaine de kilomètres seulement. Pour transformer le Soleil en trou noir, il faudrait le réduire à une boule de 3 kilomètres de rayon ; quant à la Terre, il faudrait la compacter en une bille de 1 cm !
Les trous noirs sont des objets relativistes
La théorie des trous noirs ne s’est véritablement développée qu’au XXe siècle dans le cadre de la relativité générale. Selon la conception einsteinienne, l’espace, le temps et la matière sont couplés en une structure géométrique non-euclidienne compliquée. En termes simples, la matière-énergie confère, localement du moins, une forme à l’espace-temps. Ce dernier peut être vu comme une nouvelle entité qui est à la fois « élastique », en ce sens que les corps massifs engendrent localement de la courbure, et « dynamique », c’est-à-dire que cette structure évolue au cours du temps, au gré des mouvements des corps massifs. Par exemple, tout corps massif engendre autour de lui, dans le tissu élastique de l’espace-temps, une courbure ; si le corps se déplace, la courbure se déplace avec lui et fait vibrer l’espace-temps sous formes d’ondulations appelées ondes gravitationnelles.

La courbure de l’espace-temps peut se visualiser par les trajectoires des rayons lumineux et des particules « libres ». Celles-ci épousent naturellement la forme incurvée de l’espace. Par exemple, si les planètes tournent autour du Soleil, ce n’est pas parce qu’elles sont soumises à une force d’attraction universelle, comme le voulait la physique newtonienne, mais parce qu’elles suivent la « pente naturelle » de l’espace-temps qui est courbé au voisinage du Soleil. En relativité, la gravité n’est pas une force, c’est une manifestation de la courbure de l’espace-temps. C’est donc elle qui sculpte la forme locale de l’univers.
Les équations d’Einstein indiquent comment le degré de courbure de l’espace-temps dépend de la concentration de matière (au sens large du terme, c’est-à-dire incluant toutes les formes d’énergie). Les trous noirs sont la conséquence logique de ce couplage entre matière et géométrie. Le trou noir rassemble tellement d’énergie dans un région confinée de l’univers qu’il creuse un véritable « puits » dans le tissu élastique de l’espace-temps. Toute particule, tout rayon lumineux pénétrant dans une zone critique définie par le bord (immatériel) du puits, sont irrémédiablement capturés.

Comment les trous noirs peuvent-ils se former ?
Les modèles d’évolution stellaire, développés tout au long du XXe siècle, conduisent à un schéma général de l’évolution des étoiles en fonction de leur masse. Le destin final d’un étoile est toujours l’effondrement gravitationnel de son cœur (conduisant à un « cadavre stellaire »), accompagné de l’expulsion de ses couches externes. Il y a trois types de cadavres stellaires possibles :
- La plupart des étoiles (90 %) finissent en « naines blanches », des corps de la taille de la Terre mais un million de fois plus denses, constituées essentiellement de carbone dégénéré. Ce sera le cas du Soleil.
- Les étoiles dix fois plus massives que le Soleil (9,9 %) explosent en supernova. Leur cœur se contracte en une boule de 15 km de rayon, une « étoile à neutrons » à la densité fabuleuse. Elles sont détectables sous la forme de pulsars, objets fortement magnétisés et en rotation rapide dont la luminosité radio varie périodiquement.
- Enfin, si l’étoile est initialement 30 fois plus massive que le Soleil, son noyau est condamné à s’effondrer sans limite pour former un trou noir. On sait en effet qu’une étoile à neutrons ne peut pas dépasser une masse critique d’environ 3 masses solaires. Les étoiles très massives sont extrêmement rares : une sur mille en moyenne. Comme notre galaxie abrite environ cent milliards d’étoiles, on peut s’attendre à ce qu’elle forme une dizaine de millions de trous noirs stellaires.
Quant aux trous noirs supermassifs, ils peuvent résulter, soit de l’effondrement gravitationnel d’un amas d’étoiles tout entier, soit de la croissance d’un trou noir « germe » de masse initialement modeste.
Comment détecter les trous noirs ?
Certains trous noirs peuvent être détectés indirectement s’ils ne sont pas isolés, et s’ils absorbent de la matière en quantité suffisante. Par exemple, un trou noir faisant partie d’un couple stellaire aspire l’enveloppe gazeuse de son étoile compagne. Avant de disparaître, le gaz est chauffé violemment, et il émet une luminosité caractéristique dans la gamme des rayonnements à haute énergie. Des télescopes à rayons X embarqués sur satellite recherchent de tels trous noirs stellaires dans les systèmes d’étoiles doubles à luminosité X fortement variable. Il existe dans notre seule galaxie une douzaine de tels « candidats » trous noirs.
L’observation astronomique nous indique aussi que les trous noirs supermassifs existent vraisemblablement au centre de nombreuses galaxies - dont la nôtre. Le modèle du « trou noir galactique » explique en particulier la luminosité extraordinaire qui est libérée par les galaxies dites « à noyau actif », dont les plus spectaculaires sont les quasars, objets intrinsèquement si lumineux qu’ils permettent de sonder les confins de l’espace.
En 1979, mon premier travail de recherche a consisté à reconstituer numériquement l’apparence d’un trou noir entouré d’un disque de gaz chaud. Les distorsions de l’espace-temps au voisinage du trou noir sont si grandes que les rayons lumineux épousent des trajectoires fortement incurvées permettant, par exemple, d’observer simultanément le dessus et le dessous du disque. J’ai ensuite étudié la façon dont une étoile qui frôle un trou noir géant est brisée par les forces de marée. L’étirement de l’espace est tel que, en quelques secondes, l’étoile est violemment aplatie sous la forme d’une « crêpe flambée ». Les débris de l’étoile peuvent ensuite alimenter une structure gazeuse autour du trou noir et libérer de l’énergie sur le long terme. Ce phénomène de crêpe stellaire, mis en évidence par les calculs numériques, n’a pas encore été observé, mais il fournit une explication plausible au mode d’alimentation des galaxies à noyau actif.
La physique externe des trous noirs
La théorie des trous noirs s’est essentiellement développée dans les années 1960-70. Le trou noir, comme tous les objets, tourne sur lui-même. On peut l’envisager comme un « maelström cosmique » qui entraîne l’espace-temps dans sa rotation. Comme dans un tourbillon marin, si un vaisseau spatial s’approche trop près, il commence par être irrésistiblement entraîné dans le sens de rotation et, s’il franchit une zone critique de non-retour, il tombe inéluctablement au fond du vortex.
Le temps est également distordu dans les parages du trou noir. Le temps « apparent », mesuré par toute horloge extérieure, se ralentit indéfiniment, tandis que le temps « propre », mesuré par une horloge en chute libre, n’égrène que quelques secondes avant d’être anéantie au fond du trou. Si un astronaute était filmé dans sa chute vers un trou noir, personne ne le verrait jamais atteindre la surface ; les images se figeraient à jamais à l’instant où l’astronaute semblerait atteindre la frontière du trou noir. Or, selon sa propre montre, l’astronaute serait bel et bien avalé par le trou en quelques instants.
Le théorème capital sur la physique des trous noirs se formule de façon pittoresque : « un trou noir n’a pas de poils. » Il signifie que, lorsque de la matière-énergie disparaît à l’intérieur d’un trou noir, toutes les propriétés de la matière telles que couleur, forme, constitution, etc., s’évanouissent, seules subsistent trois caractéristiques : la masse, le moment angulaire et la charge électrique. Le trou noir à l’équilibre est donc l’objet le plus « simple » de toute la physique, car il est entièrement déterminé par la donnée de ces trois paramètres. Du coup, toutes les solutions exactes de la théorie de la relativité générale décrivant la structure de l’espace-temps engendré par un trou noir sont connues et étudiées intensivement.
Par sa nature même, un trou noir est inéluctablement voué à grandir. Cependant, la théorie a connu un rebondissement intéressant au début des années 1980, lorsque Stephen Hawking a découvert que les trous noirs « microscopiques » (hypothétiquement formés lors du big-bang) se comporteraient à l’inverse des gros trous noirs. Régis par la physique quantique et non plus seulement par la physique gravitationnelle, ces micro-trous noirs ayant la taille d’une particule élémentaire mais la masse d’une montagne s’évaporeraient car ils seraient fondamentalement instables. Ce phénomène « d’évaporation quantique » suscite encore beaucoup d’interrogations. Aucun micro-trou noir n’a été détecté, mais leur étude théorique permet de tisser des liens entre la gravité et la physique quantique. Des modèles récents suggèrent que le résultat de l’évaporation d’un trou noir ne serait pas une singularité ponctuelle « nue », mais une corde – objet théorique déjà invoqué par des théories d’unification des interactions fondamentales.
L’intérieur des trous noirs
Le puits creusé par le trou noir dans le tissu élastique de l’espace-temps est-il « pincé » par un nœud de courbure infinie – auquel cas toute la matière qui tomberait dans le trou noir se tasserait indéfiniment dans une singularité ? Ou bien le fond du trou noir est-il « ouvert » vers d’autres régions de l’espace-temps par des sortes de tunnels ? Cette deuxième possibilité, apparemment extravagante, est suggérée par certaines solutions mathématiques de la relativité. Un trou de ver serait une structure topologique exotique ressemblant à une « poignée d’espace-temps » qui relierait deux régions de l’univers, dont l’une serait un trou noir et l’autre un « trou blanc ». Ces raccourcis d’espace-temps, qui permettraient de parcourir en quelques fractions de seconde des millions d’années lumière sans jamais dépasser la vitesse de la lumière, ont fasciné les physiciens tout autant que les écrivains de science-fiction. Des études plus détaillées montrent que de tels trous de ver ne peuvent pas se former dans l’effondrement gravitationnel d’une étoile : aussitôt constitués, ils seraient détruits et bouchés avant qu’aucune particule n’ait le temps de les traverser. Des modèles suggèrent que les trous de ver pourraient cependant exister à l’échelle microscopique. En fait, la structure la plus intime de l’espace-temps pourrait être constituée d’une mousse perpétuellement changeante de micro-trous noirs, micro-trous blancs et mini-trous de ver, traversés de façon fugace par des particules élémentaires pouvant éventuellement remonter le cours du temps !

La forme globale de l’univers
À l'échelle de la cosmologie, le « tissu élastique » de l’espace-temps doit être conçu comme chargé d’un grand nombre de billes - étoiles, galaxies, amas de galaxies - réparties de façon plus ou moins homogène et uniforme. La courbure engendrée par la distribution des corps est donc elle-même uniforme, c’est-à-dire constante dans l’espace. En outre, la distribution et le mouvement de la matière universelle confèrent à l’espace-temps une dynamique globale : l’univers est en expansion ou en contraction.
La cosmologie relativiste consiste à rechercher des solutions exactes de la relativité susceptibles de décrire la structure et l’évolution de l’univers à grande échelle. Les modèles à courbure spatiale constante ont été découverts par Alexandre Friedmann et Georges Lemaître dans les années 1920. Ces modèles se distinguent par leur courbure spatiale et par leur dynamique.
Dans la version la plus simple :
- Espace de courbure positive (type sphérique)
L’espace, de volume fini (bien que dans frontières), se dilate initialement à partir d’une singularité (le fameux « big-bang »), atteint un rayon maximal, puis se contracte pour s’achever dans un « big-crunch ». La durée de vie typique d’un tel modèle d’univers est une centaine de milliards d’années.
- Espace de courbure nulle (type euclidien) ou négative (type hyperbolique)
Dans les deux cas, l’expansion de l’univers se poursuit à jamais à partir d’un big-bang initial, le taux d’expansion se ralentissant toutefois au cours du temps.
La dynamique ci-dessus est complètement modifiée si un terme appelé « constante cosmologique » est ajouté aux équations relativistes. Ce terme a pour effet d’accélérer le taux d’expansion, de sorte que même un espace de type sphérique peut être « ouvert » (c’est-à-dire en expansion perpétuelle) s’il possède une constante cosmologique suffisamment grande. Des observations récentes suggèrent que l’espace cosmique est proche d’être euclidien (de sorte que l’alternative sphérique / hyperbolique n’est nullement tranchée !), mais qu’il est en expansion accélérée, ce qui tend à réhabiliter la constante cosmologique (sous une forme associée à l’énergie du vide).
Je ne développerai pas davantage la question, car elle figure au programme de la 186e conférence de l’Utls donnée par Marc Lachièze-Rey.
Quelle est la différence entre courbure et topologie ?
Avec la cosmologie relativiste, disposons-nous d’une description de la forme de l’espace à grande échelle ? On pourrait le croire à première vue, mais il n’en est rien. Même la question de la finitude ou de l’infinitude de l’espace (plus grossière que celle concernant sa forme) n’est pas clairement tranchée. En effet, si la géométrie sphérique n’implique que des espaces de volume fini (comme l’hypersphère), les géométries euclidienne et hyperbolique sont compatibles tout autant avec des espaces finis qu’avec des espaces infinis. Seule la topologie, cette branche de la géométrie qui traite de certaines formes invariantes des espaces, donne des informations supplémentaires sur la structure globale de l’espace - informations que la courbure (donc la relativité générale) ne saurait à elle seule fournir.
Pour s’assurer qu’un espace est localement euclidien (de courbure nulle), il suffit de vérifier que la somme des angles d’un triangle quelconque fait bien 180° - ou, ce qui revient au même, de vérifier le théorème de Pythagore. Si cette somme est supérieure à 180°, l’espace est localement sphérique (courbé positivement), et si cette somme est inférieure à 180°, l’espace est localement hyperbolique (courbé négativement).
Cependant, un espace euclidien n’est pas nécessairement aussi simple que ce que l’on pourrait croire. Par exemple, une surface euclidienne (à deux dimensions, donc) n’est pas nécessairement le plan. Il suffit de découper une bande dans le plan et d’en coller les extrémités pour obtenir un cylindre. Or, à la surface du cylindre, le théorème de Pythagore est tout autant vérifié que dans le plan d’origine. Le cylindre est donc une surface euclidienne de courbure strictement nulle, même si sa représentation dans l’espace (fictif) de visualisation présente une courbure « extrinsèque ». Bien qu’euclidien, le cylindre présente une différence fondamentale d’avec le plan : il est fini dans une direction. C’est ce type de propriété qui relève de la topologie, et non pas de la courbure. En découpant le plan et en le recollant selon certains points, nous n’avons pas changé sa forme locale (sa courbure) mais nous avons changé radicalement sa forme globale (sa topologie). Nous pouvons aller plus loin en découpant le cylindre en un tube de longueur finie, et en collant les deux extrémités circulaires. Nous obtenons un tore plat, c’est-à-dire une surface euclidienne sans courbure, mais fermée dans toutes les directions (de superficie finie). Une bactérie vivant à la surface d’un tore plat ne ferait pas la différence avec le plan ordinaire, à moins de se déplacer et de faire un tour complet du tore. À trois dimensions, il est possible de se livrer à ce même genre d’opérations. En partant d’un cube de l'espace euclidien ordinaire, et en identifiant deux à deux ses faces opposées, on crée un « hypertore », espace localement euclidien de volume fini.

Les espaces chiffonnés
Du point de vue topologique, le plan et l’espace euclidien ordinaire sont monoconnexes, le cylindre, le tore et l’hypertore sont multiconnexes. Dans un espace monoconnexe, deux points quelconques sont joints par une seule géodésique (l’équivalent d'une droite en espace courbe), tandis que dans un espace multiconnexe, une infinité de géodésiques joignent deux points. Cette propriété confère aux espaces multiconnexes un intérêt exceptionnel en cosmologie. En effet, les rayons lumineux suivent les géodésiques de l'espace-temps. Lorsqu’on observe une galaxie lointaine, nous avons coutume de croire que nous la voyons en un unique exemplaire, dans une direction donnée et à une distance donnée. Or, si l’espace cosmique est multiconnexe, il y a démultiplication des trajets des rayons lumineux, donnant des images multiples de la galaxie observée. Comme toute notre perception de l'espace provient de l’analyse des trajectoires des rayons lumineux, si nous vivions dans un espace multiconnexe nous serions plongés dans une vaste illusion d’optique nous faisant paraître l’univers plus vaste que ce qu’il n'est; des galaxies lointaines que nous croirions « originales » seraient en réalités des images multiples d’une seule galaxie, plus proche dans l'espace et dans le temps.

Figure : Un univers très simple à deux dimensions illustre comment un observateur situé dans la galaxie A (sombre) peut voir des images multiples de la galaxie B (claire). Ce modèle d’univers, appelé tore, est construit à partir d’un carré dont on a « recollé » les bords opposés : tout ce qui sort d’un côté réapparaît immédiatement sur le côté opposé, au point correspondant. La lumière de la galaxie B peut atteindre la galaxie A selon plusieurs trajets, de sorte que l’observateur dans la galaxie A voit les images de la galaxie B lui parvenir de plusieurs directions. Bien que l’espace du tore soit fini, un être qui y vit a l’illusion de voir un espace, sinon infini (en pratique, des horizons limitent la vue), du moins plus grand que ce qu’il n’est en réalité. Cet espace fictif a l’aspect d’un réseau construit à partir d’une cellule fondamentale, qui répète indéfiniment chacun des objets de la cellule.
Les modèles d’ univers chiffonné permettent de construire des solutions cosmologiques qui, quelle que soit leur courbure, peuvent être finies ou infinies, et décrites par des formes (topologies) d’une grande subtilité. Ces modèles peuvent parfaitement être utilisés pour décrire la forme de l’espace à très grande échelle. Un espace chiffonné est un espace multiconnexe de volume fini, de taille est plus petite que l’univers observé (dont le rayon apparent est d’environ 15 milliards d’années-lumière).
Les espaces chiffonnés créent un mirage topologique qui démultiplie les images des sources lumineuses. Certains mirages cosmologiques sont déjà bien connus des astronomes sous le nom de mirages gravitationnels. Dans ce cas, la courbure de l’espace au voisinage d'un corps massif situé sur la ligne de visée d’un objet plus lointain, démultiplie les trajets des rayons lumineux provenant de l'arrière-plan. Nous percevons donc des images fantômes regroupées dans la direction du corps intermédiaire appelé « lentille ». Ce type de mirage est dû à la courbure locale de l’espace autour de la lentille.
Dans le cas du mirage topologique, ce n’est pas un corps particulier qui déforme l’espace, c’est l’espace lui-même qui joue le rôle de la lentille. En conséquence, les images fantômes sont réparties dans toutes les directions de l'espace et toutes les tranches du passé. Ce mirage global nous permettrait de voir les objets non seulement sous toutes leurs orientations possibles, mais également à toutes les phases de leur évolution.

Tests observationnels de l'univers chiffonnés
Si l’espace est chiffonné, il l’est de façon subtile et à très grande échelle, sinon nous aurions déjà identifié des images fantômes de notre propre galaxie ou d'autres structures bien connues. Or, ce n’est pas le cas. Comment détecter la topologie de l’univers? Deux méthodes d’analyse statistique ont été développées récemment. L’une, la cristallographie cosmique, tente de repérer certaines répétitions dans la distribution des objets lointains. L’autre étudie la distribution des fluctuations de température du rayonnement fossile. Ce vestige refroidi du big-bang permettrait, si l’espace est chiffonné, de mettre en évidence des corrélations particulières prenant l’aspect de paires de cercles le long desquels les variations de température cosmique d’un point à l’autre seraient les mêmes.

Les projets expérimentaux de cristallographie cosmique et de détection de paires de cercles corrélés sont en cours. Pour l’instant, la profondeur et la résolution des observations ne sont pas suffisantes pour tirer des conclusions sur la topologie globale de l’espace. Mais les prochaines années ouvrent des perspectives fascinantes ; elles livreront à la fois des sondages profonds recensant un très grand nombre d’amas lointains de galaxies et de quasars, et des mesures à haute résolution angulaire du rayonnement fossile. Nous saurons peut-être alors attribuer une forme à l'espace.
Bibliographie
Jean-Pierre Luminet, Les trous noirs, Le Seuil / Points Sciences, 1992.
Jean-Pierre Luminet, L’univers chiffonné, Fayard, 2001.
COMMENTAIRES

AJOUTER UN COMMENTAIRE LIRE LES COMMENTAIRES
Alain MOCCHETTI 14/02/2018 00H09
QU'EST-CE QU’UN VORTEX ESPACE - TEMPS ET UN TROU DE VER ?
Un Vortex Espace – Temps ou Porte Spatio-Temporelle est un 4ème type de VORTEX qui permet de voyager à la fois dans l’Espace et dans le Temps :
- Voyager dans l’Espace en reliant un Univers Multiple à un autre,
- Voyager dans l’Espace en reliant un Univers Parallèle à un autre,
- Voyager dans l’Espace en reliant 2 points au sein du même Univers Multiple ou du même Univers Parallèle.
Il permet de voyager également dans le Temps :
- Du Futur vers le Passé,
- Du Passé vers le Futur.
Certains Vortex qui permettent de voyager dans l’Espace Temps sont appelés TROU DE VER.
Définition d’un Trou de Ver :
Un trou de ver est, en physique, un objet hypothétique qui relierait deux feuillets distincts ou deux régions distinctes de l'espace-temps et se manifesterait, d'un côté, comme un trou noir et, de l'autre côté, comme un trou blanc. Un trou de ver formerait un raccourci à travers l'espace-temps. Pour le représenter plus simplement, on peut se représenter l'espace-temps non en quatre dimensions mais en deux dimensions, à la manière d'un tapis ou d'une feuille de papier. La surface de cette feuille serait pliée sur elle-même dans un espace à trois dimensions. L'utilisation du raccourci « trou de ver » permettrait un voyage du point A directement au point B en un temps considérablement réduit par rapport au temps qu'il faudrait pour parcourir la distance séparant ces deux points de manière linéaire, à la surface de la feuille. Visuellement, il faut s'imaginer voyager non pas à la surface de la feuille de papier, mais à travers le trou de ver, la feuille étant repliée sur elle-même permet au point A de toucher directement le point B. La rencontre des deux points serait le trou de ver. L'utilisation d'un trou de ver permettrait le voyage d'un point de l'espace à un autre (déplacement dans l'espace), le voyage d'un point à l'autre du temps (déplacement dans le temps) et le voyage d'un point de l'espace-temps à un autre (déplacement à travers l'espace et en même temps à travers le temps). Les trous de ver sont des concepts purement théoriques : l'existence et la formation physique de tels objets dans l'Univers n'ont pas été vérifiées. Il ne faut pas les confondre avec les trous noirs, dont l'existence tend à être confirmée par de nombreuses observations, dont le champ gravitationnel est si intense qu’il empêche toute forme de matière de s'en échapper.
Alain Mocchetti
Ingénieur en Construction Mécanique & en Automatismes
Diplômé Bac + 5 Universitaire (1985)
UFR Sciences de Metz
alainmocchetti@sfr.fr
alainmocchetti@gmail.com
@AlainMocchetti

 

 VIDEO       CANAL  U         LIEN

 
 
 
initiation musicale toulon   Le renversement du temps en acoustique Par Mathias Fink
  initiation musicale

Texte de la 350e conférence de l’Université de tous les savoirs donnée le 15 décembre 2000.

Le renversement du temps en acoustique Par Mathias Fink


Nous vivons dans un environnement qui nous paraît pratiquement toujours
irréversible : Lorsqu’on fait tomber une goutte d'encre dans de l'eau, on voit le colorant diffuser et on ne voit jamais réapparaître au sein du liquide la goutte d’encre initiale. Cette apparente irréversibilité du monde macroscopique a toujours intrigué les physiciens dans la mesure où les équations de la physique microscopique et de la mécanique sont, elles, parfaitement réversibles. Il y a eu et il y a toujours de nombreux débats sur ce thème, et nous savons que, pour expliquer cette tendance vers l'irréversibilité, le physicien Ludwig Boltzman a introduit le concept d'entropie qui mesure en quelque sorte le désordre d’un système de particules Il a montré que lorsque l'on s’intéresse à un système de particules qui interagissent (de façon élastique) entre elles, et lorsque ce système est isolé du reste de l'univers, la tendance naturelle de l’ensemble des particules est d’évoluer vers le plus grand désordre c’est- à-dire vers une entropie maximale. Il faut remarquer cependant que cette croissance de l’entropie d’un système de particules n’est observée que dans les systèmes parfaitement isolés. Lorsqu’un système est en interaction avec l’extérieur et peut échanger aussi bien des particules que de l’énergie, on peut observer lorsque le système est maintenu hors d’équilibre une apparition d’ordre dans le système. Ce domaine a été exploré de façon très approfondie ces dernières décennies en physique non linéaire à la suite des travaux précurseurs de Ilya Prigogine. Le problème qui nous intéresse ici est différent, il s’agit de savoir s’il est possible d’exploiter la réversibilité qui existe à l’échelle microscopique pour réaliser en laboratoire des expériences macroscopiques que l’on fait évoluer dans les deux sens : de l’ordre vers le désordre et ensuite de façon parfaitement symétrique du désordre vers l’ordre. Quel dispositif doit entourer notre système de particules en interaction pour pouvoir inverser la dynamique de ces particules sur commande ?

Pour aborder ce problème il faut d’abord comprendre ce que signifie l’assertion : la physique microscopique est réversible ? Cette affirmation est fondamentalement liée au principe de la dynamique que Newton a énoncé et qui dit la chose suivante : Lorsque vous avez une particule d’une certaine masse qui est soumise à une force, cette particule va se déplacer avec une vitesse qui évoluera au cours du temps et son accélération (dérivée de la vitesse par rapport au temps c’est-à-dire taux de variation de la vitesse par unité de temps) sera proportionnelle à cette force. C’est bien l’accélération de la particule qui est proportionnelle à la force et non pas sa vitesse (comme on le pense souvent à tort). Or la vitesse d’une particule est elle-même la dérivée de la position de la particule par rapport au temps, ce qui implique que c’est la dérivée seconde par rapport au temps de la position de la particule (l’accélération) qui est proportionnelle à la force : F = mγ où γ est l'accélération. C'est ce fait relativement étrange qui implique que les lois de la mécanique sont réversibles. Si, par exemple, vous observez les trajectoires de deux boules de billard qui peuvent interagir, leurs positions au cours du temps vont respecter la loi de la dynamique. Ces deux boules peuvent se cogner ou peuvent interagir à travers différentes forces. Ce que dit l'équation de la dynamique sur la réversibilité de cette expérience, c'est la chose suivante : si deux physiciens très adroits étaient capables d’arrêter, à un instant donné, ces deux boules de billards tout en mesurant exactement leur vitesse (au moment où ils les arrêtent) et si, plus tard, ils étaient capables de les renvoyer, de façon parfaitement synchrone, en leur communiquant une vitesse opposée, et bien, ces deux boules n'auront pas d'autres possibilités que de revivre pas à pas leur vie passée, c'est-à-dire de parcourir leur trajectoire initiale en sens inverse (pour un
système de particules indestructibles, refaire leur trajectoire en sens inverse c’est revivre leur vie passée !).
On imagine aisément les difficultés expérimentales qui se posent pour réaliser ce genre d’expérience avec deux boules qui s’entrechoquent (il faudrait de remarquables joueurs de billard) et on peut légitimement se poser la question de la réalisation de telles expériences sur un système encore plus compliqué formé de milliers de boules qui s'entrechoquent. Théoriquement au moins, si on pouvait arrêter, mesurer et renvoyer l’ensemble des boules en marche arrière avec les bonnes vitesses : toutes les trajectoires se déroulerons en sens inverse et les mêmes collisions auront lieu dans une chronologie inversée comme si on passait un film à l’envers. Est-il possible de réaliser de telles expériences ? Avant de réaliser l’expérience, on peut au moins la simuler dans un ordinateur qui a été programmé pour effectuer les calculs des trajectoires de chaque particule en respectant scrupuleusement la loi de la dynamique. On part, par exemple de 1 000 boules en interactions et on suit à chaque instant la position et la vitesse de chaque boule. Puis, à un instant donné, on arrête le système de particules et on inverse toutes les vitesses afin de renvoyer les boules en marche arrière. On applique toujours la loi de la dynamique et on observe le système évoluer. Et bien la déception est de taille : ça ne marche pas ; au début, les boules repartent sur leur trajectoire initiale, mais après une dizaine de collisions effectuées exactement en marche arrière, le système se met à dégénérer, et on n'arrive pas à reconstituer le passé du système. Pourquoi ?
Parce qu'un ordinateur a une précision finie, et lorsqu’on mesure la position et la vitesse de chaque particule on obtient, dans la mémoire de l’ordinateur, des chiffres représentés avec une précision finie qui dépendent du nombre de bits sur lesquels on échantillonne le signal. On se heurte alors au problème fondamental de la physique classique : le chaos déterministe. La moindre erreur dans la mesure ou dans la préparation du système de particules va s'amplifier de façon exponentielle avec le temps. Typiquement une erreur de mesure de 10-15 suffit, sur une machine travaillant avec une précision de 64 bits, pour perdre l’évolution réversible après 10 collisions. L'erreur initiale est tellement amplifiée qu’après quelques collisions les particules ne retrouvent plus leurs anciens partenaires. Cette sensibilité exponentielle aux erreurs fixe les limites d’une telle expérience. C’est le même phénomène qui interdit aussi de prévoir le climat une semaine à l’avance. Devant une telle constatation et devant le succès des théories du chaos déterministe, il semble donc que bien que la physique microscopique soit réversible, on ne pourra jamais, avec nos moyens limités, renverser le temps dans une expérience de physique. Heureusement, ce qui vient d’être dit ne concerne que le monde des particules classiques (approximation du monde quantique). Si l’on s’intéresse à l’évolution d’une onde au cours du temps la situation est beaucoup plus sympathique, et les ondes se rencontrent dans tous les domaines de la physique depuis la mécanique quantique en passant par l’électromagnétisme ou par l’acoustique.
C’est dans ce dernier domaine typiquement macroscopique que des expériences de renversement du temps peuvent être réalisées relativement facilement. Les ondes acoustiques évoluent dans des systèmes de particules où le nombre des particules est extraordinairement grand, bien plus grand que les 1 000 particules dont nos parlions tout à l’heure. Les systèmes de particules (les molécules) qui nous intéressent en acoustique peuvent être des gaz, des liquides ou des solides. À coté des mouvements d’agitation désordonnés de chaque molécule qui existent à toutes les températures (différentes du zéro absolu), il existe des mouvements coordonnés de ces particules qui sont décrits par les ondes acoustiques. Lorsqu’une personne parle, le mouvement vibratoire de ses cordes vocales se répercute sur les molécules d’air et de proche en proche se répand un mouvement vibratoire des molécules d’air autour de leur position d’équilibre. Ce qui est important, c’est que ces mouvements sont des mouvements d’ensemble où toutes les molécules bougent en phase sur des distances qui sont caractérisées par la longueur d’onde de l’onde acoustique. Sur une échelle de l’ordre de la longueur d’onde
(ou plutôt du dixième de la longueur d’onde), c’est l’ensemble des particules qui bouge de façon coordonnée et non pas chaque particule qui bouge indépendamment les unes des autres.
Pour ces mouvements collectifs, qui respectent eux aussi les lois de la dynamique, et dont l’évolution dans le temps peut être très compliquée dans le cas de la propagation acoustique dans des milieux complexes (réfraction, réflexion, diffraction), les acousticiens ont la chance unique de disposer de deux instruments très performants qui peuvent être reproduits à des milliers d’exemplaires et qui sont le microphone et le haut-parleur.
Que fait un microphone ? Lorsqu’un microphone est positionné à un endroit où les particules sont mises en mouvement par le passage des ondes acoustique, le choc de ses particules sur la membrane du microphone génère un courant électrique proportionnel à la vitesse des particules. Un microphone mesure donc localement la vitesse des particules. Que fait un haut-parleur ? Lorsqu’on envoie un courant électrique dans un haut-parleur, la membrane du haut-parleur se met en mouvement à une vitesse proportionnelle à ce courant. Elle communique alors aux molécules d’air avec laquelle elle est en contact cette vitesse. Si on savait réaliser localement les deux fonctions microphone puis haut-parleur, on disposerait alors du physicien de base idéal pour réaliser une expérience de renversement du temps. Or, nous disposons dans le domaine de la physique de petits gadgets qu'on appelle des transducteurs piézo-électriques qui remplissent parfaitement cette double fonction (ce sont des transducteurs réversibles). La piézo-électricité propriété découverte par Pierre Curie est un phénomène réversible qui se manifeste dans certains cristaux pour lesquels une contrainte appliquée engendre l’apparition d’un courant électrique, et dans lesquels réciproquement l’injection d’un courant électrique déforme le cristal.
Fort de ces dispositifs une expérience de renversement du temps peut s’envisager en acoustique en réalisant ce que nous avons appelé une cavité à renversement temporel. Les parois de cette cavité sont tapissées de transducteurs piézo-électriques reliés chacun à une mémoire électronique de grande taille.
Quelque part au sein de la cavité, un cri est émis par une source quelconque (les cris dont nous parlons peuvent être sonores ou ultrasonores, et c'est dans le domaine des ultrasons que ces dispositifs ont d’abord été réalisé, les longueurs d’onde ultrasonores qui nous intéressent sont millimétriques, alors que les longueurs d’onde sonores sont plutôt décimétriques). Ce cri va mettre en vibration les molécules du milieu situées à l’intérieur de la cavité. Si par exemple la vitesse du son est constante dans la cavité et si le cri émis part dans toutes les directions (source omnidirectionnelle) l’onde acoustique se répandra de façon parfaitement symétrique dans l’espace (on parlera d’onde sphérique). Si par contre le milieu de propagation est complexe, par exemple, rempli de nombreux obstacles et de matériaux dans lesquels la vitesse du son change, le front d’onde se déformera et l’onde ne gardera plus son caractère sphérique et on verra apparaître de nombreux échos sur les obstacles qui briseront la symétrie spatiale de l’onde émise initialement. Le son perçu par un observateur pourra être différent du cri initial, les effets de réverbération et de déformation de l’onde pourront dans certain cas le rendre incompréhensible.

Dans une expérience de renversement du temps1, on tapisse les parois de la cavité de dispositifs réversibles qui jouent alternativement le rôle de microphones et de haut-parleurs (figure 1). Chaque microphone mesure l’onde acoustique qui l’atteint et tous les signaux électriques sont enregistrés dans des mémoires électroniques rapides, identiques à celles utilisées en informatique. On mesure ainsi au cours du temps la vitesse des particules qui cognent les microphones sur toute la surface de la cavité. Une fois que l’intérieur de la cavité est devenu parfaitement silencieux, quand toute l’énergie sonore a été convertie par les microphones en électricité, on passe à la phase de renversement du temps. Il s’agit alors de
1 M.Fink “Time reversed Acoustics” Physics Today, 20, p.34-40, Mars 97.
relire l’ensemble des mémoires électroniques en verlan. Plus exactement on inverse la chronologie des signaux sonores reçus par chaque microphone. Les signaux arrivés les derniers sont relus en premiers et vice versa. Chaque microphone passe alors en mode haut- parleur et est alimenté en verlan par les mémoires électroniques. L’ensemble de ces haut- parleurs émet alors en parallèle une gigantesque onde sonore suivant une chronologie inversée, et du fait de la réversibilité des lois de la dynamique, cette onde sonore n’a pas d’autre possibilité que de revivre pas à pas toutes les étapes de sa vie passée pour reconverger finalement très précisément sur la source sous la forme du cri initial prononcé en verlan.
Figure 1
Parmi les différents dispositifs que nous avons réalisés dans notre laboratoire, une cavité à retournement temporel fonctionne dans le domaine audible. Elle est formée de 70 couples de microphones-haut parleurs qui ceinturent une pièce de grande dimension. Une personne située dans la pièce dit « bonjour » et les 70 microphones fonctionnent en mode
« retournement temporel ». Ils génèrent alors une onde acoustique qui revient alors en marche arrière vers l’interlocuteur et converge vers sa tête sous la forme d’un signal qui ressemble à
« roujnob ». Si maintenant deux personnes parlent en même temps dans la pièce et prononcent, par exemple, pour l’un « bonjour » et pour l’autre « hello », une fois l’opération de retournement temporel effectuée, chacune des personnes recevra en verlan le message qu’elle a prononcé. On peut compliquer ce petit jeu et si dés le départ chaque personne parle en verlan, alors après la phase de renversement temporel, une personne entendra bonjour et l’autre hello. On peut ainsi au moyen des nombreux haut-parleurs situés dans la pièce envoyer en même temps différents messages aux différentes personnes d’une pièce. En utilisant le concept de renversement du temps le système apprend à réaliser le jeu d’interférences sonores optimal pour focaliser chaque message au bon endroit. Il faut aussi remarquer que tous les défauts de la pièce (réverbérations et diffraction par les obstacles) sont parfaitement corrigés.
Ces expériences de renversement du temps sont étonnamment robustes et permettent de corriger la propagation acoustique dans des milieux très complexes. C’est un problème qui se pose souvent dans le domaine des ultrasons qui sont utilisés pour faire l’image du corps humain, d’un moteur d’avion ou des fonds marins. En médecine, certain patient donne des images ultrasonores floues, il s’agit en général des patients obèses ou très musclés. En effet la technique de focalisation qui est utilisée en échographie pour donner des images nettes ne marche que si la vitesse des ultrasons est constante dans le corps humain, or les couches de graisse et les muscles ont des vitesses ultrasonores sensiblement différentes de celles des autres tissus et les ultrasons ne se propagent plus en ligne droite dans de tels milieux. Comment corriger la déformation des faisceaux ultrasonores dans ces milieux sans connaître la carte exacte des vitesses ultrasonores ? Les techniques de retournement temporel permettent de résoudre ce problème. Une expérience ultrasonore réalisé par Arnaud Derode dans un milieu particulièrement complexe2 illustre ce concept. On s’intéresse ici à la propagation d’une onde ultrasonore de fréquence 3 Mhz (c’est-à-dire 3 millions d’oscillation par seconde). C’est une fréquence typiquement utilisée en médecine auquel correspond une longueur d’onde de 0,5 mm dans l’eau ou dans le corps humain. On utilise ici non pas une cavité à retournement temporel qui nécessiterait des dizaines de milliers de transducteurs, mais un petit miroir à retournement temporel formé d'un réseau de 128 transducteurs répartis sur un rectangle de 4 cm. Il est immergé dans une cuve d’eau. Entre le miroir et une source
2 A. Derode, P. Roux et M. Fink “Robust Acoustic Time reversal with high order multiple scattering” Physical Review Letters , Décembre 1995, Vol 75, 23, p 4206-4209.
acoustique de très faible dimension, on a introduit un milieu très désordonné formé de 2 000 tiges de métal qui résonnent toutes à la fréquence de 3 Mhz. C’est un milieu particulièrement épouvantable pour les ultrasons (figure 2). Dans la première phase de l’expérience la source ponctuelle émet un signal ultrasonore très bref dont la durée est de 1 microseconde, soit trois périodes ultrasonores (figure 3a). Cette onde brève se propage à travers la forêt de tiges qui la modifie complètement. Seule une faible partie de l’onde initiale se propage en ligne droite, alors que la plus grande partie de l’énergie incidente va subir de très nombreuses collisions qui vont la rendre complètement aléatoire. L’onde initiale se divise en de très nombreuses ondelettes à chaque collision avec les tiges et le processus va se répéter avec, comme résultante, un signal ultrasonore très long (300 microsecondes) qui a l’allure d’un bruit complètement aléatoire qui est observé à la sortie du milieu. Les 128 transducteurs enregistrent ces signaux dont la durée typique est de l’ordre de 300 microsecondes (figure 3 b). Après renversement du temps dans les mémoires électroniques les 128 bruits acoustiques sont réémis dans le milieu. On observe alors le signal ultrasonore qui se repropage à travers l’ensemble des tiges et on constate qu’à l’emplacement exact de la source initiale le signal ultrasonore dure maintenant 1 microseconde c’est-à-dire. qu’il a exactement retrouvé sa durée initiale (figure 3c). Par ailleurs, en explorant latéralement le champ autour du point initial, on constate que l’onde est parfaitement focalisée sur celui ci.
Figure 2 : Dans un premier temps, une impulsion ultrasonore est émise par la source A. Le signal acoustique ayant traversé la forêt de tiges métalliques est capté en B par l’ensemble des transducteurs d’un réseau linéaire de 128 éléments. Dans une deuxième étape, les 128 signaux captés sont réémis vers la forêt de tiges après inversion de la chronologie temporelle, et on peut observer au point source le signal retourné temporellement.
Figure 3a : On observe sur cette figure une portion de 80 μs du signal capté par un des éléments de la barrette de transducteurs. La durée totale du signal est de plus de 300 μs, à comparer avec la durée du pulse initial de 1 μs.
Figure 3b : On retrouve au point A un signal dont la durée est pratiquement de 1 μs après l’opération de retournement temporel.

Cette expérience de recompression temporelle et spatiale d’un signal multidiffusé illustre bien l’efficacité étonnante du renversement temporel pour les ondes acoustiques. Elle montre aussi la très faible sensibilité aux conditions initiales de l’expérience. Les signaux enregistrés et retournés dans les mémoires sont échantillonnés par des convertisseurs analogiques/digitaux d’une dynamique de 8 bits fonctionnant à 20 Mhz de fréquence d’échantillonnage. Néanmoins la quantité d’information que nous avons captée et retournée est suffisante pour assurer une bonne propagation inverse à travers les 2 000 tiges. Curieusement, un petit miroir à retournement temporel, qui pourtant ne capte le champ ultrasonore que sur une faible ouverture angulaire (comparé à une cavité à retournement temporel) permet de réaliser une expérience de renversement du temps de très bonne qualité pourvu que le milieu traversé soit très hétérogène et très diffusant. Pourtant le milieu formé d’une répartition aléatoire de tiges, s’apparente en mécanique statistique à ce qu’on appelle un gaz de Lorentz, qui est un milieu chaotique. Le comportement dynamique d’une bille qui serait envoyé dans ce gaz est typiquement chaotique. Deux boules lancées au sein de ce système de tiges sur des trajectoires voisines suivent, après un certain nombres de rebonds, des trajectoires qui s’écartent l’une de l’autre suivant une loi exponentielle. Cette sensibilité aux conditions initiales interdit la réalisation d’une expérience de renversement du temps en
mécanique alors que la propagation des ondes dans un tel milieu est bien moins chatouilleuse et beaucoup plus robuste.

Plus étrange encore, on constate dans nos expériences que plus le milieu a un comportement chaotique, moins le nombre de transducteurs, nécessaires pour réaliser une expérience de renversement du temps sur un champ ondulatoire, est grand. Nous avons même montré qu’en utilisant un unique transducteur de très petite taille et réversible, on pouvait effectuer un renversement du temps quasi parfait en entourant le milieu de propagation par des bords parfaitement réfléchissants disposés suivant des géométries très particulières qui sont celles des billards chaotiques. La théorie de ces billards chaotiques a été élaborée par plusieurs mathématiciens russes (Sinai, Bunimovitch). L’idée qui nous guidait ici était que pour pouvoir capter toute l’information sur l’onde provenant d’une source omnidirectionnelle, plutôt que de mettre des transducteurs dans toutes les directions de l’espace, il était plus astucieux d’entourer la source de murs réfléchissant capable de rediriger vers un unique transducteur toutes les composantes de l’onde (tous les rayons). Certaines géométries de billard on cette propriété qui est qualifiée chez les physiciens d’ergodicité et les billards en forme de stade sont ergodiques. Chaque trajectoire de la bille passe en attendant suffisamment longtemps aussi près que l’on veut de tous les points du billard. Pour la propagation des ondes, cette notion est plus difficile à formuler, mais nous pouvons dire, qu’en chaque point du billard, l’évolution temporelle de l’onde élastique contient toute l’information sur le champ ondulatoire et sur la source qui lui a donné naissance. C’est cette propriété qui nous permet de n’utiliser qu’un unique point de mesure et de retournement temporel pour renverser le champ ondulatoire dans toute la cavité.
Pour réaliser cette expérience3, nous produisons une onde élastique à la surface d’une plaque de silicium qui à la forme d’un disque circulaire tronqué par deux segments parallèles (c’est notre stade chaotique). Cette géométrie assure l’érgodicité du billard. En un point A du billard, la pointe d’un cône d’aluminium solidaire d’un transducteur piézo-électrique est en contact avec la plaque de silicium. Elle oscille très brièvement et engendre des ondes de surface pendant une microseconde. La longueur d’onde de ces ondes est typiquement de 2,5 mm. Une seconde pointe couplée à un capteur piézo-électrique, placée en B, enregistre les oscillations produites par le passage de l’onde. Le signal observé et enregistré en ce point a une durée très longue (figure 4). Il est en effet formé d’un premier signal direct qui arrive du point A mais qui est suivi de très nombreuses répliques provenant des réflexions multiples de l’onde entre les bords du billard. Ces signaux se superposent pour donner un champ ondulatoire d’aspect complètement aléatoire. Durant le temps caractéristique de l’enregistrement (plusieurs dizaines de millisecondes) les ondes parcourent plusieurs centaines de mètres et elles traversent le billard des centaines de fois.
Figure 4 : Schéma de l’expérience de renversement du temps à l’intérieur d’ une cavité de géométrie ergodique. Les points A et B sont situés sur une plaque de silicium dont
les bords ont une géométrie chaotique.
Du signal enregistré au point B, nous extrayons une partie (deux millisecondes) que nous renvoyons du même point, selon une chronologie inversée. On utilise alors une sonde optique pour suivre la progression de l’onde de surface renversée temporellement. On constate qu’après quelques millisecondes, l’onde revient à son pont de départ, comme si nous passions le film de la propagation initiale à l’envers (figure 5). La focalisation de l’onde autour du point A est optimale à condition que le temps durant lequel l’onde est renvoyée soit au moins égal au temps de Poincaré ou temps d’ergodisation du billard, c’est-à-dire. le temps
3 Draeger, M. Fink “One channel time-reversal of elastic waves in a chaotic 2D-silicon cavity” Physical Review Letters , 79 (3), p.407-410, Juillet 1997.
nécessaire pour que toute l’information sur le champ ondulatoire atteigne B. La tache focale obtenue autour de la source à une symétrie circulaire et son diamètre a une dimension égale à la demi longueur d’onde utilisée. Nous avons constaté que l’expérience était très robuste et que de petites perturbations n’empêchaient pas la focalisation de se réaliser.
Figure 5 : On observe autour du point A , au moyen d’un interféromètre optique, la propagation de l’onde retourné temporellement au point B. On peut constater qu’au temps t = 0 μs, elle se concentre au point source sous la forme d’une tâche de diffraction très symétrique dont la largeur est égale à la demi longueur d’onde.

La conclusion de cette expérience est pour le moins curieuse, les ondes aiment les environnements chaotiques. Elles sont beaucoup plus faciles à manipuler dans ce contexte et le contrôle d’un champ ondulatoire nécessite beaucoup moins de sources dans ces géométries. Plus le milieu est complexe, plus l’onde acoustique retrouve facilement sa source. Renversement du temps ondulatoire et chaos se marient très bien.
Si les expériences décrites précédemment illustre l’intérêt des miroirs à retournement temporel sur le plan fondamental, c’est dans le domaine de l’échographie ultrasonore, que les applications de cette technique sont les plus prometteuses. On a alors une situation différente de celles décrites précédemment, car on ne dispose généralement pas d’une source acoustique active qui envoie une onde qu’on cherche à renverser temporellement. Le problème qui peut être résolu est celui de la détection ou de l’imagerie de cibles réfléchissantes situées derrière des milieux de propagation complexes. C’est un peu comme si on essayait de voir un obstacle derrière un verre dépoli ! Les milieux de propagation dans lesquels les ultrasons se propagent sont souvent hétérogènes et les faisceaux ultrasonores sont distordus au cours de la propagation. Dans le domaine médical, par exemple, une couche de graisse d'épaisseur variable, des tissus osseux ou certaines couches de tissus musculaires peuvent fortement perturber la propagation des ultrasons et les techniques de focalisation nécessaires pour obtenir de bonnes images ne fonctionnent pas correctement. Dans un autre domaine, celui du contrôle non destructif par ultrasons des objets solides (en aéronautique et dans l’industrie nucléaire), les pièces à contrôler sont généralement immergées. La forme de l’interface entre la pièce solide et le liquide de couplage complique la propagation ultrasonore et limite actuellement le niveau de détection des petits défauts. En acoustique sous-marine, la turbulence, les phénomènes de convection, les variations de la vitesse du son en fonction de la profondeur et la réverbération acoustique entre le fond et la surface de la mer sont aussi des sources très importantes de distorsion pour les sonars.
Comment, dans ces cas, exploiter le principe du retournement temporel pour détecter et focaliser sur une cible ? Il suffit pour cela d’utiliser le réseau de transducteurs formant le miroir à retournement temporel suivant la séquence suivante. Dans un premier temps, on illumine le milieu à explorer au moyen d'une impulsion ultrasonore brève. Dans le cas où le milieu contient une cible réfléchissante, on sélectionne l’écho réfléchi par cette cible au moyen d'une fenêtre temporelle et on renverse temporellement cet écho avant de la ré-émettre. La cible réfléchissante, une fois illuminée, se comporte comme une source acoustique secondaire sur laquelle le front d'onde réémis focalisera de façon optimale même à travers un milieu de propagation hétérogène (figure 6). En présence de plusieurs cibles, on peut montrer que l’itération du procédé permet de focaliser rapidement sur la cible la plus brillante.

Figure 6 : Un élément d’un réseau de transducteurs envoie une onde ultrasonore à travers un milieu, de célérité ultrasonore hétérogène, qui déforme le faisceau (phase a). En présence d’une cible réfléchissante (à droite de la figure), une onde réfléchie revient vers le réseau de
capteurs (phase b). Enfin les signaux échographiques sont retournés temporellement et renvoyés vers la cible de façon optimale (phase c).
La première application des miroirs à retournement temporel est la destruction précise des calculs rénaux et vésiculaires dans le corps humain. Dans les techniques actuelles de lithotritie la localisation du calcul est réalisée au moyen d'un imageur échographique ou d'une unité de visualisation à rayons X. Bien que la position du calcul puisse dans le cas de l'imagerie X être connue avec précision, la focalisation des ondes ultrasonores, destinées à la destruction, à travers des tissus hétérogènes reste délicate. Autre inconvénient encore plus important, le ou les calculs bougent lors de la respiration et sur des distances qui peuvent atteindre plusieurs centimètres. Or la destruction d'un calcul requiert plusieurs milliers de tirs focalisés sur une zone de quelques mm2 et il n'est pas possible actuellement de faire suivre mécaniquement à la sonde d'émission focalisée tous ces mouvements. On considère que dans les dispositifs piézo-électriques actuels plus de 70 % des tirs ultrasonores ratent le calcul. Le miroir à retournement temporel permet de résoudre ces problèmes. Pour repérer un calcul rénal dans son environnement (autres calculs et parois des organes), on illumine d'abord la zone à explorer. Les signaux réfléchis sont captés et retournés temporellement. Après plusieurs itérations du processus, le faisceau ultrasonore converge vers la zone la plus réfléchissante d'un des calculs. On peut alors, amplifier très fortement les derniers signaux de l'itération afin de détruire la lithiase. Nous avons réalisé et testé, avec l’aide de l’ANVAR un tel dispositif et une version compacte de cet appareil est en développement.
Un autre domaine d'applications des miroirs est celui du contrôle non destructif des matériaux, domaine dans lequel on cherche à détecter et à localiser la présence de petits défauts dans des matériaux solides4. Ce problème est particulièrement difficile à résoudre pour des matériaux hétérogènes et pour des pièces de forme géométrique complexe. La pièce à contrôler est généralement immergée dans une piscine dans laquelle un ensemble de transducteurs ultrasonores, fonctionnant en mode échographique, se déplace tout en émettant des faisceaux ultrasonores destinés à balayer et à pénétrer dans la zone d'intérêt. Ces faisceaux sont distordus au passage de l'interface entre l'eau et le matériau solide suivant les lois de la réfraction. L'utilisation d'un miroir à retournement temporel se révèle être une solution particulièrement élégante pour améliorer les performances de détection. Dans le cadre d’une importante collaboration avec la SNECMA, un miroir à retournement temporel formé de 128 voies fonctionnant en temps réel a été réalisé et testé dans notre laboratoire. En utilisant des techniques de retournement temporel itératives, nous avons pu montrer avec François Wu que l’on pouvait détecter des défauts de 0,4 mm à plus de 150 mm de profondeur dans les alliages de titane. C’est une performance bien meilleure que celle obtenue par les autres méthodes ultrasonores de CND. La possibilité de réaliser un véritable autofocus ultrasonore ouvre des perspectives très prometteuses dans le domaine du contrôle des matériaux. Une autre application médicale très prometteuse du retournement temporel est la thérapie du cerveau par hyperthermie ultrasonore. Il s’agit de focaliser des ultrasons à travers la boite crânienne en corrigeant les aberrations de la propagation par des techniques dérivées du retournement temporel. La technique que nous avons dernièrement développée avec M. Tanter et J.L Thomas, permet de compenser les effets de dissipation qui existent dans le crâne et qui brisent l’invariance par renversement du temps. Elle repose sur l’utilisation de techniques de retournement temporel couplées à la correction des effets de dissipation qui existent dans le crâne et qui brisent l’invariance par renversement du temps. Cette technique permet de compenser avec une grande précision les effets de réfraction, d’absorption et de réverbération de la boite crânienne. Un prototype complet formé de près de 200 transducteurs
4 M. Fink “Ultrasound puts materials to the test” Physics World, p.41-45, Février 1998.
de puissance est en cours de réalisation. La technique de focalisation ultrasonore que nous avons mise au point est très efficace, et son utilisation en imagerie ultrasonore du cerveau est aussi possible.
D'autres applications des miroirs à retournement temporel sont en test en détection et en télécommunications sous-marines. Une équipe de l’Université de San Diego (dirigée par le Prof. Kuperman) et l’OTAN ont testé en mer de très grandes antennes à retournement temporel (100m ) qui ont permis de focaliser des ondes acoustiques à des distances de 15 km sur des zones de l’ordre du mètre5. C’est la réverbération des ondes acoustiques entre le fond de la mer et la surface qui est exploitée pour obtenir des taches focales très fines. Le pilotage des petits robots téléguidés par retournement temporel acoustique permet d’atteindre des grands débits d’information et l’information n’est envoyé qu’au bon véhicule. De nombreuses applications sous-marines sont en test par plusieurs laboratoires au USA (SCRIPPS, University of Washington et M.I.T), aussi bien dans le domaine des télécommunications croisées et cryptées entre toute une flotte de navires de surface, de sous-marins et de robots sous-marins, que dans la mise au point de barrières acoustiques à retournement temporel, qui dans des chenaux sous-marins très réverbérants permettent de repérer le passage d’une cible de faible dimension (plongeur).
Enfin les techniques de retournement temporel des ondes peuvent aussi s’appliquer à d’autres types d’onde que les ondes acoustiques. En télécommunication par voie Hertzienne vers les téléphones mobiles, ou on utilise des ondes électromagnétiques à des fréquences de quelques GHz, la réverbération des ondes électromagnétique entre les structures d’une ville, limite fortement le débit d’information qui peut être envoyé entre l’antenne émettrice et les téléphones cellulaires. Les techniques de retournement temporel, en exploitant la réverbération en milieu urbain, comme dans le cas des expériences qui ont été faites dans des billards chaotiques, vont permettre de focaliser les messages de façon très précise sur chaque récepteur et le débit d’information pourra alors être augmenté d’une façon très importante. Cette technologie est plus difficile à mettre en œuvre qu’en acoustique du fait des fréquences utilisées qui sont 1000 fois supérieures à celles des ultrasons, mais les progrès de l’électronique rapide permettent maintenant de réaliser des miroirs électromagnétiques à retournement temporel.
Du chaos quantique, à la télécommunication à haut débit en ville, en passant par la thérapie, l’imagerie médicale, le contrôle non-destructif et l’acoustique sous-marine, l’invariance par renversement du temps des équations de la physique peut jouer un rôle important6. Contrairement, à l’intuition, la nature chaotique de la propagation dans la plupart des environnements réverbérants n’est pas une limite au contrôle des champs ondulatoires ; elle devient un énorme avantage lorsqu’on exploite astucieusement les symétries de la physique et les progrès vertigineux de l’électronique rendent désormais très accessibles la construction de miroirs à retournement temporel.
5 W.A. Kupperman, W.S. Hodgkiss, Hee C. Song, T. Akal, C. Ferla et D. Jackson “Phase conjugation in the ocean: Experimental demonstration of an acoustic time reversal mirror” J .Acoust. Soc. Am, 103, 25-40
(1998).
6 M. Fink, D. Cassereau A. Derode, C. Prada, P. Roux, M. Tanter, J-L Thomas et F. Wu « Time-
reversed acoustics » Reports on Progress in Physics, Topical review, 63, 12 p 1933-1995, Dec 2000.
transducteurs
p(r,t)
(a)
Source acoustique
p(r,-t)
(b)
FIG. 1
(A)
(A)
x axis
(B)
(étape 1)
(étape 2)
Fig. 2 : Dans un premier temps, une impulsion ultrasonore est émise par la source A. Le signal acoustique ayant traversé la forêt de tiges métalliques est capté en B par l’ensemble des transducteurs d’un réseau linéaire de 128 éléments.
Dans une deuxième étape, les 128 signaux captés sont réémis vers la forêt de tiges après inversion de la chronologie temporelle, et on peut observer au point source le signal retourné temporellement .
(B)
80 μs
240 248 256 264 272 280 288 296 304 312 temps (μs)
Fig 3a - On observe sur cette figure une portion de 80 μs du signal capté par un des éléments de la barrette de transducteurs. La durée totale du signal est de plus de 300 μs, à comparer avec la durée du pulse initial de 1 μs.
297 301 305 309 313 317 321 325 329 333 337 341 345 temps (μs)
Fig 3b - On retrouve au point A un signal dont la durée est pratiquement de 1 μs après l’opération de retournement temporel.

Figure 4 : Schéma de l’expérience de renversement du temps à l’intérieur d’ une cavité de géométrie ergodique. Les points A et B sont situés sur une plaque de silicium dont les bords ont une géométrie chaotique.

 

  VIDEO       CANAL  U         LIEN

 

  VIDEO       CANAL  U         LIEN  ( vidéo )
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ] - Suivante
 
 
 
Google