|
|
|
|
 |
|
LE BOSON DE HIGGS |
|
|
 |
|
Auteur : sylvain Date : 05/07/2012 |
|
|
|
|
Le 4 juillet 2012 à 15h54
Un nouveau boson découvert au Cern : le Higgs, peut-être...
Par Laurent Sacco, Futura-Sciences Share on joliprintPDF Partager C’est un boson, le plus lourd jamais découvert dans un accélérateur de particules et on observe les conséquences de son existence dans les deux détecteurs géants du LHC. Voici l'annonce du Cern, tant attendue. Avec une masse d’environ 126 GeV, il s’agit très probablement du boson de Higgs supposé être à l’origine des masses des particules élémentaires. Mais il reste du travail pour déterminer s’il possède bien les propriétés du boson de Higgs ou s’il s’agit d’une particule radicalement nouvelle.
Parcourez notre dossier complet sur le boson de Higgs
Tout le monde attendait la conférence de ce matin du 4 juillet 2012 au Cern, annonçant les derniers résultats de la chasse au boson de Higgs. Avait-on enfin découvert la mythique particule censée expliquer l’origine des masses des quarks et des leptons du modèle standard et plus précisément celles des particules médiatrices des forces du modèles électrofaibles ? Les rumeurs de la découverte de ce boson allaient bon train mais la seule chose certaine était que quatre des six physiciens ayant introduit le mécanisme dit de Brout-Englert-Higgs en 1964 seraient bien présents pour écouter ce que les deux porte-paroles des expériences phares du LHC allaient dire.
C’est Joe Incandela qui a pris la parole le premier, au nom de la collaboration CMS, puis ce fut le tour de Fabiola Gianotti pour Atlas. Dans les deux cas l’émotion a saisi l’assemblée ainsi bien sûr que tous les physiciens suivant le séminaire sur Internet, lorsque les deux chercheurs ont dévoilé les résultats des analyses faites.
En rouge on voit la trajectoire de 4 muons dans le détecteur Atlas, résultant très probablement de la désintégration d'un boson de Higgs. © ATLAS, Collaboration-Cern
Il y a très peu de doute que les détecteurs Atlas et CMS aient effectivement permis de découvrir une nouvelle particule dans les produits de collisions de faisceaux de protons durant les années 2011 et 2012 au Cern. Dans les deux cas, il s’agit d’un boson dont la masse est d’environ 126 GeV et qui se désintègre en d’autres particules selon des réactions similaires. On observe ainsi des paires de photons gamma et des quadruplets de leptons (comme des muons ou des électrons), ainsi que d’autres produits de désintégrations.
Un boson dont l'identité est encore incertaine
Surtout, si l’on compare les deux détecteurs à deux appareils de réception radio cherchant à écouter une station à une fréquence donnée au-dessus d’un bruit de fond, la musique qu’ils écoutent maintenant est devenue beaucoup plus clairement audible. En termes techniques, on dit que le signal est au-dessus du bruit de fond à 5 sigma dans les deux appareils. C’est un peu comme si on écoutait une partie d’une symphonie de Mozart et qu’il n’y ait que 0,00003 % de chance environ que des fluctuations dans le bruit de fond aient reproduit par hasard ce morceau de musique.
John Ellis, le grand physicien théoricien, répond à la question : qu'est-ce que le boson de Higgs et comment le recherche-t-on ? © CernTV, YouTube
Cinq sigma, c'est le seuil que l'on doit atteindre, dans deux appareils de détections différents, pour éviter des erreurs systématiques, et pouvoir affirmer avoir fait une découverte en physique. Peut-on dire pour autant que l'on a découvert le boson de Higgs ?
Pas encore....
Cependant, comme le dit le directeur de la recherche du Cern, Sergio Bertolucci : « Il est difficile de ne pas s’enthousiasmer. Nous avions dit l’année dernière qu'en 2012, soit nous trouverions une nouvelle particule semblable au boson de Higgs, soit nous exclurions l’existence du Higgs du modèle standard. Avec toute la prudence qui s’impose, nous nous trouvons, il me semble, à un croisement : l’observation de cette nouvelle particule nous montre la voie à suivre dans l’avenir pour mieux comprendre ce que nous observons dans les données ». Ce à quoi Rolf Heuer, le directeur général du Cern, a ajouté : « Nous avons franchi une nouvelle étape dans notre compréhension de la nature. La découverte d’une particule dont les caractéristiques sont compatibles avec celles du boson de Higgs ouvre la voie à des études plus poussées, exigeant davantage de statistiques, qui établiront les propriétés de la nouvelle particule ; elle devrait par ailleurs lever le voile sur d’autres mystères de notre univers ».
Futura-Sciences reviendra bientôt plus en profondeur sur cette découverte.
DOCUMENT FUTURA-SCIENCES LIEN
LE SPIN :c'est le moment angulaire ( ou cinétique ) des particules quantiques.
DOCUMENT univ-Lill.fr LIEN |
|
|
|
|
 |
|
LE TEMPS |
|
|
 |
|
Auteur : sylvain Date : 01/04/2012 |
|
|
|
|
|
|
|
|
|
 |
|
RAYONNEMENT ULTRA-BREF... |
|
|
 |
|
Auteur : sylvain Date : 30/03/2012 |
|
|
|
|
Paris, 29 mars 2012
Générer pour la première fois un rayonnement ultra-bref de manière contrôlée à l'aide d'un plasma
Pour observer des phénomènes ultrarapides tels que le mouvement des électrons au sein de la matière, les chercheurs ont besoin de sources capables de produire des rayonnements lumineux extrêmement brefs et énergétiques. Si des dispositifs capables d'émettre des impulsions dans le domaine de l'attoseconde (10-18 seconde) existent déjà, de nombreuses équipes s'efforcent de repousser les limites de leur intensité et de leur durée. Une équipe pilotée par le Laboratoire d'optique appliquée (LOA, CNRS / ENSTA-Paristech / Ecole Polytechnique), en collaboration avec le CEA-Saclay et le Laboratoire pour l'utilisation des lasers intenses (LULI, CNRS / CEA / Ecole Polytechnique / UPMC), a réussi, pour la première fois, à accélérer et guider de façon reproductible des électrons dans un plasma à l'aide d'un laser. Ces électrons excitent le plasma, qui émet alors des impulsions électromagnétiques ultra brèves à des longueurs d'onde dans le domaine de l'extrême ultraviolet. Ce rayonnement attoseconde énergétique pourra servir à sonder les processus électroniques ultra rapides. Ces travaux sont publiés dans Nature Physics.
Des événements, tels que l'ionisation d'un atome ou le passage d'un électron d'un état d'excitation à un autre, se déroulent sur des échelles de temps typiques de l'ordre de l'attoseconde (un milliardième de milliardième de seconde). Pour les observer en direct, on doit pouvoir produire des impulsions lumineuses d'une durée comparable afin de « saisir » l'évolution du phénomène, à la manière d'un obturateur photographique. Jusqu'à présent, il n'existait qu'une manière d'obtenir des impulsions aussi brèves, en excitant par laser les électrons d'un gaz. Ces derniers émettent alors une impulsion dans le domaine de l'extrême ultraviolet (X-UV). Mais ce procédé a des limites et, pour observer certains phénomènes, les chercheurs auraient besoin de sources encore plus brèves et surtout plus énergétiques. Voilà pourquoi de nombreuses équipes se sont tournées vers la physique des plasmas, cet état de la matière extrêmement chaud et dense, constitué d'ions et d'électrons.
L'équipe menée par le LOA est la première à avoir obtenu des impulsions attoseconde dans l'X-UV de façon reproductible en contrôlant l'excitation d'un plasma par des électrons accélérés dans un champ laser. Pour y parvenir, les chercheurs ont d'abord dû développer une source laser très performante, permettant d'atteindre des éclairements mille à dix mille fois supérieurs à ceux utilisés dans les milieux gazeux, et délivrant un millier d'impulsions par seconde d'une durée de l'ordre de quelques femtosecondes chacune (10-15 seconde). De plus, cette source est stabilisée en phase : toutes les impulsions générées sont identiques les unes par rapport aux autres. Les chercheurs sont parvenus à focaliser toute la puissance lumineuse du laser sur une tache d'un peu plus d'un micron de diamètre à la surface d'une cible en silice. La matière de la cible est ainsi transformée en un plasma de densité comparable à celle d'un solide. Dans ce plasma, les électrons sont fortement accélérés par le champ électromagnétique produit par le faisceau laser. Lorsqu'ils traversent le plasma, ils excitent au sein de celui-ci des mouvements collectifs de charges produisant alors un rayonnement X-UV que les chercheurs ont pu observer et analyser à l'aide d'un spectromètre.
Ces travaux devraient déboucher sur une source de rayonnement énergétique dont pourront se servir physiciens et chimistes pour sonder les processus électroniques dans la matière avec une résolution temporelle dans le domaine attoseconde. Pour l'heure, les chercheurs prévoient d'améliorer encore leur source laser afin de produire un rayonnement encore plus bref et à plus courte longueur d'onde (dans le domaine des rayons X), en guidant de manière contrôlée le mouvement des électrons dans le plasma qui se déplacent à des vitesses proches de celle de la lumière.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
GENETIQUE |
|
|
 |
|
Auteur : sylvain Date : 24/02/2012 |
|
|
|
|
Paris, 16 février 2012
Quand votre main gauche mime ce que fait votre main droite : une histoire de gène
Des chercheurs de l'Inserm, du CNRS, de l'UPMC et de l'AP-HP au sein du Centre de Recherche de l'Institut du Cerveau et de la Moelle (CRICM) de la Pitié-Salpêtrière, viennent de mettre en évidence des mutations à l'origine de la maladie des Des chercheurs de l'Inserm, du CNRS, de l'UPMC et de l'AP-HP au sein du Centre de Recherche de l'Institut du Cerveau et de la Moelle (CRICM) de la Pitié-Salpêtrière, viennent de mettre en évidence des mutations à l'origine de la maladie des mouvements en miroir congénitaux. Les personnes atteintes de cette maladie ont perdu la capacité de réaliser un mouvement différent des deux mains. Grâce au séquençage du génome de plusieurs membres d'une même famille française, le gène RAD51 a été identifié. Des travaux complémentaires menés chez la souris suggèrent qu'il s'agit d'un gène impliqué dans le croisement des voies motrices. Ce croisement est un point clé de transmission des informations cérébrales puisqu'il permet à la partie droite du cerveau de contrôler la partie gauche du corps et inversement.
Ces travaux sont publiés dans la revue The American Journal of Human Genetics.
Les mouvements en miroir congénitaux constituent une maladie rare qui se transmet de génération en génération selon un mode dit dominant. Les personnes atteintes ont perdu la capacité de réaliser un mouvement différent des deux mains : lorsqu'une main effectue un mouvement, l'autre main est « obligée » d'effectuer le même mouvement, même contre la volonté du sujet. Dans cette maladie, il est donc rigoureusement impossible d'avoir une activité motrice bi-manuelle telle que jouer du piano par exemple. Il arrive que l'on observe ces phénomènes chez les enfants, mais ils disparaissent généralement spontanément avant l'âge de 10 ans, surement grâce à la maturation des réseaux de neurones moteurs. Toutefois chez les personnes malades, les symptômes de la maladie débutent dès la petite enfance et restent inchangés tout au long de la vie.
En 2010, des chercheurs québécois ont découvert un gène responsable de la maladie grâce à l'analyse du génome des membres d'une grande famille canadienne. Des mutations avaient été identifiées dans le gène DCC (Deleted in Colorectal Carcinoma). Après cette découverte, l'équipe de chercheurs et de médecins coordonnée par Emmanuel Flamand-Roze a donc cherché des mutations de ce gène chez plusieurs membres d'une famille française atteinte de la maladie des mouvements en miroir congénitaux : sans succès. « Le gène DCC était intact » explique Emmanuel Flamand-Roze. « Alors que l'on croyait toucher au but, il a donc fallut chercher une mutation dans un autre gène » ajoute-t-il.
Par une approche couplant une analyse génétique conventionnelle et une analyse en « whole exome » (une technique d'analyse génétique de nouvelle génération permettant le séquençage entier de la partie signifiante du génome) les chercheurs ont démontré que le gène RAD51 était responsable de la maladie des mouvements en miroir congénitaux dans une grande famille française et confirmé ce résultat dans une famille allemande atteinte de la même maladie.
« Le gène RAD51 était bien connu de la communauté scientifique pour son rôle potentiel dans la survenue de certains cancers et dans les phénomène de résistance aux chimiothérapies » explique Emmanuel Flamand-Roze. Nous avons donc cherché s'il pouvait avoir une fonction différente pouvant expliquer les symptômes moteurs de cette maladie.
Le système moteur se constitue chez l'homme selon une organisation croisée : le cerveau gauche commandant la motricité du côté droit et réciproquement, avec un croisement qui s'effectue au niveau du tronc cérébral. En étudiant l'expression de la protéine RAD51 au cours du développement du système moteur chez la souris, les chercheurs ont découvert que ce gène pourrait être impliqué dans le croisement des voies motrices reliant le cerveau à la moelle épinière au niveau du tronc cérébral.
Cette découverte ouvre un champ complètement nouveau d'investigation pour la connaissance du développement du système moteur et pour une meilleure compréhension des mécanismes cérébraux qui contrôlent la motricité bi-manuelle (très mal connus). Elle pourrait ainsi permettre d'apporter un éclairage sur d'autres désordres moteurs impliquant une altération de l'organisation fine du mouvement tels que la dystonie ou sur certaines maladies génétiques neuro-développementales.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ] Précédente - Suivante |
|
|
|
|
|
|