|
|
|
|
|
|
DOMESTICATION DU BLE |
|
|
|
|
Auteur : sylvain Date : 13/04/2013 |
|
|
|
|
Paris, 15 novembre 2011
Domestication du blé, quand l'évolution des gènes fait bien les choses
A l'origine même de l'agriculture, le blé est, après des millénaires, la première plante cultivée au monde et l'aliment de base du tiers de la population mondiale. Les espèces de blé cultivé, fruits d'une sélection menée par l'homme, présentent un génome* complexe qui associe deux ou trois génomes homologues. Une étude publiée par des chercheurs de l'INRA, du CEA/Genoscope et leurs collègues américains dans la revue Proceedings of the National Academy of Science du 15 novembre 2011, révèle que les différentes copies d'un gène appelé Q, élément majeur de la domestication du blé, contribuent de manière coordonnée et différenciée aux caractères de la domestication. Ces travaux constituent un cas d'école en matière de régulation et d'interaction entre copies dupliquées des gènes au sein d'un organisme qui possède plusieurs génomes.
La plupart des êtres vivants ont deux jeux de chromosomes dans leurs cellules, on les appelle diploïdes. Dans certaines conditions, par exemple suite à des croisements entre espèces, le nombre de chromosomes peut être augmenté par agrégation de plusieurs génomes, on parle alors d'espèces polyploïdes. La majorité des plantes à fleurs dont les plantes cultivées comme le blé ont une origine polyploïde. Ce mécanisme a été très important dans l'évolution, la diversification et la création de variabilité génétique.
Le blé, jamais deux sans trois… génomes
Originaires du Moyen-Orient, les différentes espèces de blé (Triticum et Aegilops) ont subi au cours des siècles des transformations qui les ont fait passer de l'état de plantes sauvages à celui d'espèces cultivées. Actuellement, deux espèces de blé sont principalement cultivées : le blé dur utilisé pour les pâtes et le blé tendre employé pour le pain. Elles ont été générées par des événements de polyploïdisation intervenus suite à des croisements entre espèces ancestrales. Le premier événement implique deux espèces diploïdes présentant 7 paires de chromosomes, Triticum urtatu (génome AA) et une espèce d'Aegilops (génome BB) ; il a eu lieu il y a environ 500 000 ans et a conduit à l'apparition de blés tétraploïdes dont le blé dur, Triticum turgidum (génome AABB, 14 paires de chromosomes). Le second événement a eu lieu au cours de la domestication, il y a environ 9000 ans, entre un blé tétraploïde cultivé et un blé diploïde (Aegilops tauschii, génome DD). Il a donné le blé tendre, Triticum aestivum, qui est hexaploïde (génome AABBDD, 21 paires de chromosomes).
Le gène Q, élément clé de la domestication du blé
Au fil du temps, l'homme a sélectionné des plantes de blé répondant mieux à ses besoins (facilitation de culture, amélioration de l'utilisation…). On a ainsi vu apparaître, lors des premières étapes de la domestication, des populations du blé qui avaient perdu la possibilité, par rapport aux plantes sauvages, de disséminer leurs graines à maturité. Ces blés présentent un épi compact dont la tige centrale ou rachis ne se désarticule pas, favorisant ainsi la récolte. Ces caractères sont contrôlés par le gène Q, un gène majeur de la domestication.
L'évolution du gène Q au service de la domestication du blé
Les chercheurs ont exploré l'organisation, le fonctionnement et l'évolution des différentes copies du gène Q porté par les chromosomes 5 des trois génomes A, D et B du blé tendre (T. aestivum) afin de comprendre leurs participations aux caractères de la domestication.
Les scientifiques ont ainsi mis en évidence que les trois copies du gène agissent ensemble, chacune contribuant aux caractères liés à la domestication de façon directe ou via des processus de régulation liés à l'environnement (on parle d'épigénétique).
Ils ont montré que l'évolution du gène Q varie selon les copies : elle se traduit par une hyperfonctionnalisation d'une copie (5A), par une pseudogénisation de la deuxième copie (5B) qui ne code plus pour une protéine active mais reste fonctionnelle et continue à contribuer aux caractères de domestication, et par une sous-fonctionnalisation de la troisième copie (5D).
L'ensemble des résultats constitue une avancée déterminante dans la compréhension des bases moléculaires et génomiques de la domestication du blé. Il révèle un des rares exemples de mécanisme d'interaction et de partage de fonction entre les copies d'un gène chez une plante polyploïde, en lien avec la morphologie et la domestication du blé.
Plus encore, alors que la domestication et la culture du blé ont été des éléments fondateurs des premières civilisations humaines dans le Croissant Fertile, ce travail apporte une pierre à l'édifice de la compréhension du développement de l'agriculture et de la sédentarisation des premières populations.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
UNE SIGNATURE MOLECULAIRE DE LA DEFICIENCE INTELLECTUELLE |
|
|
|
|
Auteur : sylvain Date : 31/03/2013 |
|
|
|
|
Paris, 26 août 2011
Une signature moléculaire de la déficience intellectuelle
La déficience intellectuelle (DI) est un handicap fréquent qui concerne près de 3 % de la population générale mais dont les causes sont encore peu connues. Aujourd'hui, les équipes de Laurence Colleaux de l'unité de recherche "génétique et épigénétique des maladies métaboliques, neurosensorielles et du développement” et de Jean Marc Egly de l'"Institut de génétique et de biologie moléculaire et cellulaire" ont identifié une mutation sur un gène impliqué dans la transcription de l'ADN en ARN messager, 1ère étape d'un processus complexe aboutissant à la synthèse des protéines. Cette mutation bouleverse l'expression de gènes essentiels à la plasticité cérébrale, l'ensemble des mécanismes par lesquels le cerveau modifie l'organisation de ses réseaux de neurones en fonction des expériences vécues. Selon l'étude, l'anomalie de ces gènes, dits "précoces", serait une des "signatures moléculaires" de la déficience intellectuelle. Ces résultats sont publiés dans la revue Science datée du 26 aout.
La déficience intellectuelle (DI) est définie comme un « fonctionnement intellectuel général inférieur à la moyenne, qui s'accompagne de limitations significatives du fonctionnement adaptatif». Parmi les DI, les formes dites "non syndromiques" sont caractérisées par une diminution isolée et non progressive des performances intellectuelles. Les chercheurs se sont penchés sur ces formes de déficits car les gènes responsables participent directement aux processus liés aux fonctions cognitives : mémorisation, apprentissage, comportement, etc.
Les équipes de recherche de Laurence Colleaux et Jean Marc Egly, ont identifié une mutation du gène MED23 qui est liée à une DI isolée. MED23 code une des sous-unités d'un large complexe multiprotéique : le Médiateur (MED, cf. Figure 1). Ce complexe est connu pour son rôle dans une étape clé de la régulation de l'expression des gènes : la transcription. Il permet aux facteurs de transcription spécifiques d'un gène de s'assembler pour interagir avec l'ARN polymérase, l'enzyme clé de cette étape.
Au cours de ces travaux, les chercheurs ont démontré que les cellules de patients atteints de DI présentent un défaut d'expression de certains gènes parmi lesquels les gènes "précoces" JUN et FOS. Ces derniers sont impliqués dans l'expression d'une cascade de gènes liés à diverses fonctions cellulaires, notamment au niveau du système nerveux central. Leur activation rapide et transitoire est une étape clé dans le développement et la plasticité cérébrale.
La mutation identifiée conduit à la synthèse d'une protéine MED23 modifiée devenue incapable d'interagir correctement avec les facteurs spécifiques des deux gènes considérés. Par exemple, dans le cas du gène JUN, l'assemblage permettant la transcription est défectueux suite à un mauvais contact entre la protéine MED23 mutée et le facteur TCF4 (en bleu cf. Figure 2).
"L'étude de patients DI porteurs de mutations modifiant d'autres protéines impliquées dans la transcription, suggère que cette anomalie d'expression des gènes "précoces" puisse être une "signature moléculaire" de ce trouble", explique Laurence Colleaux. Ces résultats apportent donc un nouvel argument en faveur du rôle majeur des anomalies de l'expression génique dans la recherche des causes de déficiences intellectuelles.
La déficience intellectuelle en chiffres
3 % de la population générale concernée
Entre 6 000 et 8 500 naissances avec un handicap mental par an.
Si 20 % des DI peuvent être attribuées à des facteurs environnementaux, 40 % à des causes génétiques connues, les causes de la maladie restent inconnues dans près de la moitié des cas.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
NEUROBIOLOGIE - MUSIQUE |
|
|
|
|
Auteur : sylvain Date : 27/03/2013 |
|
|
|
|
Biologie Neuropsychologie Psychophysiologie Pathologies
Pathologies de la perception musicale Soigner par la musique Expérience réalisée Glossaire Bibliographie
Sites web visités Revues, ouvrages étudiés Téléchargements Neurobiologie de l'audition
Au niveau cérébral
La distinction entre les sons musicaux s'effectue dans une région du cerveau d'évolution récente, le cortex auditif, responsable de l'intégration d'un morceau et de notre réaction à la musique et où se décide si le morceau est inspirant ou non. Toutefois, l'information musicale est aussi traitée dans d'autres parties du cerveau (cf. : Figure 6, paragraphe ii. Autres activations corticales et schéma récapitulatif).
« La musique existe dans un contexte culturel et un morceau de musique peut susciter différentes émotions chez différents groupes culturels. Même dans un seul groupe, chaque individu possède une expérience de vie propre dans laquelle il puise lorsqu'il réagit à la musique. » (Ante Padjen, musicien et chercheur en neurosciences à l'Université McGill) Ainsi, un des défis les plus important des chercheurs en musique est de découvrir où la biologie se situe parmi toutes ces variables sociales. Quelles règles biologiques persistent malgré les divers contextes culturels dans lesquels la musique est appréciée ? Y a-t-il un seul centre de la musique dans le cerveau ? Des études en imagerie du cerveau indiquent que plusieurs régions distinctes du cerveau jouent un rôle dans le traitement et l'appréciation de la musique. Ces interactions entre diverses structures cérébrales dans la musique expliquent les liens important qui existent entre cet art et les émotions. Toutefois, des études menées chez les personnes souffrant d'une déficience sur le plan musical montrent également que certains réseaux spécialisés distincts du cerveau pourraient être dévoués spécifiquement à la cognition musicale.
Par exemple, certains des circuits du cerveau intervenant dans la perception de la musique semblent être séparés des circuits qui traitent le langage et d'autres sons dans l'environnement, comme l'ont montré des études menées chez des personnes souffrant d'amusie. Les personnes « amusiques » sont incapables de percevoir des différences de hauteur tonale dans la musique et peuvent par conséquent être incapables de chanter dans le ton, de danser sur de la musique ou de mémoriser une mélodie. Cependant, ces personnes possèdent des capacités cognitives parfaitement normales et leurs fonctions auditives et langagières sont intactes.
Ces études indiquent également que l'on doit d'abord percevoir la musique normalement avant de pouvoir en jouir. Par exemple, un patient amusique étudié par Isabelle Peretz, ne pouvait déceler des variations de tonalité dans la musique inférieures à deux demi-tons et déclarait que la musique sonnait comme du bruit et même l'indisposait. Ce qui est le cas de la plupart des personnes amusiques, incapables de distinguer les fausses notes et les dissonances.
L’ensemble des aires cérébrales auditives est situé sur la partie supérieure de la 1ère circonvolution temporale (T1). La partie antérieure de T1, appelée gyrus de Heschel, constitue le cortex auditif primaire. Juste en arrière se trouvent les aires secondaires qui constituent le planum temporal (cf. : Figure 9).
DOCUMENT u-bordeau.fr LIEN
|
|
|
|
|
|
|
NEWS |
|
|
|
|
Auteur : sylvain Date : 27/03/2013 |
|
|
|
|
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ] Précédente - Suivante |
|
|
|
|
|
|