ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

QU'EST-CE QU'UNE PARTICULE ? (LES INTERACTIONS DES PARTICULES)

  initiation musicale

 

 

 

 

 

 

QU'EST-CE QU'UNE PARTICULE ? (LES INTERACTIONS DES PARTICULES)

En principe, une particule élémentaire est un constituant de la matière (électron par exemple) ou du rayonnement (photon) qui n'est composé d'aucun autre constituant plus élémentaire. Une particule que l'on croit élémentaire peut par la suite se révéler composée, le premier exemple rencontrée ayant été l'atome, qui a fait mentir son nom dès le début du XXe siècle. Nous décrirons d'abord l'état présent des connaissances, résultat des quarante dernières années de poursuite de l'ultime dans la structure intime de la matière, de l'espace et du temps, qui ont bouleverse notre vision de l'infiniment petit. Puis, nous essaierons de conduire l'auditeur dans un paysage conceptuel d'une richesse extraordinaire qui nous a permis d'entrevoir un peuple d'êtres mathématiques - déconcertants outils permettant d'appréhender des réalités inattendues - et dans lequel de nombreuses régions restent inexplorées, où se cachent sans doute des explications sur la naissance même de notre univers.

Texte de la 208e conférence de l’Université de tous les savoirs donnée le 27 juillet 2000.Qu'est-ce qu'une particule élémentaire?par André NeveuIntroduction De façon extrêmement pragmatique, une particule élémentaire est un constituant de la matière (ou du rayonnement) qui ne nous apparaît pas comme lui-même composé d'éléments encore plus élémentaires. Ce statut, composé ou élémentaire, est à prendre à un instant donné, et à revoir éventuellement avec l'affinement des procédés d'investigation. Mais il y a plus profond dans cet énoncé : chaque étape de l'investigation s'accompagne d'une interprétation, d'une recherche d'explication sur la manière dont ces particules interagissent pour former des entités composées à propriétés nouvelles, c'est à dire d'une construction théorique qui s'appuie sur des mathématiques de plus en plus abstraites, et qui, au cours de ce siècle, a contribué à plusieurs reprises au développement de celles-ci. Le long de cette quête d'une construction théorique cohérente, des problèmes peuvent apparaître, qui conduisent à la prédiction de particules ou d'interactions non encore découvertes, et ce va et vient entre théorie et expérience également raffinées où chacune interpelle l'autre, n'est pas le moins fascinant des aspects de cette quête de l'ultime. Aspect qui se retrouve d'ailleurs dans bien d'autres domaines de la physique. C'est là qu'est la vie de la recherche, plus que dans la construction achevée : les faits nous interpellent et à notre tour nous les interpellons. Où en sommes-nous aujourd'hui ? Une brève descente dans l'infiniment petit Comme chacun sait, la chimie et la biologie sont basées sur le jeu presque infini de molécules constituées d'atomes. Comme l'étymologie l'indique, on a cru ceux-ci élémentaires, et, effectivement, pour la chimie et la biologie, on parle toujours à juste titre d'éléments chimiques, oxygène, hydrogène, carbone, etc. L'ordre de grandeur de la dimension d'un atome est le dix milliardième de mètre. Depuis le début du siècle, on sait que chaque atome est formé d'électrons autour d'un noyau, cent mille fois plus petit que l'atome. Le noyau est lui-même constitué de protons et de neutrons liés entre eux par des forces de liaison nucléaires mille à dix mille fois plus grandes que les forces électrostatiques qui lient les électrons au noyau. Alors que les électrons restent à ce jour élémentaires, on a découvert il y a quarante ans environ que les protons et les neutrons eux-mêmes sont composés de quarks liés entre eux par des forces encore plus grandes, et nommées interactions fortes à ce titre (en fait, elles sont tellement fortes qu'il est impossible d'observer un quark isolé). Au cours de cette quête des cinquante dernières années, à l'aide principalement des grands accélérateurs comme ceux du CERN, on a découvert d'autres particules, neutrinos par exemples et des espèces d'électrons lourds (muon et lepton τ), et diverses espèces de quarks, la plupart de durée de vie extrêmement courte, leur laissant, même à la vitesse de la lumière, à peine le temps de faire une trace de quelques millimètres dans les appareils de détection, et aussi les antiparticules correspondantes. quarksuctgluonsdsb interactions fortesleptonsneutrinosυeυμυτW+ γ Z0 W-chargéseμτ interactions électrofaiblesgravitontrois « générations » de matièrevecteurs de forces Figure 1 Les particules élémentaires actuellement connues. À gauche les trois générations de fermions (quarks et leptons). Chaque quark existe en trois « couleurs », « vert », « rouge » et « bleu ». Chaque lepton chargé (électron e , muon μ et tau τ ) est accompagné d'un neutrino. À droite les vecteurs de forces : gluons, photon γ , bosons W et Z , graviton. La figure 1 présente l'ensemble des particules actuellement connues et considérées comme élémentaires, quarks et leptons, et des vecteurs de forces (voir plus bas) entre eux. Alors que les leptons s'observent isolément, les quarks n'apparaissent qu'en combinaisons « non colorées » : par exemple, le proton est formé de trois quarks (deux u et un d), un de chaque « couleur », (laquelle n'a rien à voir avec la couleur au sens usuel) « vert », « bleu », « rouge », pour que l'ensemble soit « non coloré ». D'autres particules, pions π et kaons K par exemple, sont constituées d'un quark et d'un antiquark, etc., tout cela de façon assez analogue à la formation de molécules en chimie à partir d'atomes. Pour avoir une idée de toute la richesse de combinaisons possibles et en même temps de la complexité et du gigantisme des appareils utilisés pour les détecter, je vous invite vivement à visiter le site du CERN, http ://www.cern.ch. Figure 2 Un événement observé aux anneaux de collision électrons-positrons du LEP. La figure 2 est un piètre exemple en noir et blanc de ce qu'on peut trouver en splendides couleurs sur ce site, une donnée expérimentale presque brute sortie du grand détecteur Aleph au collisionneur électrons-positrons LEP : les faisceaux d'électrons et positrons arrivent perpendiculairement à la figure, de l'avant et de l'arrière, au point d'interaction IP, où ils ont formé un boson Z de durée de vie extrêmement courte, qui s'est désintégré en une paire quark-antiquark, rapidement suivis de la création d'autres paires qui se sont réarrangées pour donner les traces visibles issues de IP et d'autres invisibles, car électriquement neutres, mais éventuellement détectables au moment de leur désintégration en particules chargées (pion, kaons et électrons en l'occurrence). En mesurant les longueurs des traces et les énergies des produits de désintégration et leur nature, on parvient à remonter aux propriétés des quarks produits au point IP et des mésons qu'ils ont formés. Cette figure, par son existence même, est un exemple de va et vient théorie-expérience : il faut avoir une idée très précise du genre d'événement que l'on cherche, et d'une interprétation possible, car il s'agit vraiment de chercher une aiguille dans une meule de foin : il y a un très grand nombre d'événements sans intérêt, que les ordinateurs qui pilotent l'expérience doivent rejeter avec fiabilité. Il est intéressant de noter que plusieurs membres de la figure 1 ont été prédits par cohérence de la théorie (voir plus bas), les quarks c, b, t, et le neutrino du τ, détecté pour la première fois il y a quinze jours, et, dans une certaine mesure, les bosons W et Z. Comme l'appellation des trois « couleurs », les noms de beaucoup de ces particules relèvent de la facétie d'étudiants ! Après la liste des particules, il nous faut parler de leurs interactions, car si elles n'interagissent pas entre elles, et finalement avec un détecteur, nous ne les connaîtrions pas ! En même temps que leurs interactions, c'est à dire leur comportement, nous aimerions comprendre comment on en a prédit certaines par cohérence de la théorie, mais aussi la raison de leur nombre, des caractéristiques de chacune, bref le pourquoi de tout (une ambition qui est fortement tempérée par l'indispensable humilité devant les faits) ! Dans le prochain paragraphe, nous tenterons cette explication. Comprendre Symétries et dynamique : la théorie quantique des champs Ici, les choses deviennent plus difficiles. Vous savez que les électrons tournent autour du noyau parce qu'ils sont négatifs et le noyau positif, et qu'il y a une attraction électrostatique entre les deux. Cette notion de force (d'attraction en l'occurrence) à distance n'est pas un concept compatible avec la relativité restreinte : une force instantanée, par exemple d'attraction électrostatique entre une charge positive et une charge négative, instantanée pour un observateur donné, ne le serait pas pour un autre en mouvement par rapport au premier. Pour les forces électrostatiques ou magnétiques par exemple, il faut remplacer la notion de force par celle d'échange de photons suivant le diagramme de la figure 3a. Ce diagramme décrit l'interaction entre deux électrons par l'intermédiaire d'un photon. Il peut aussi bien décrire les forces électrostatiques entre deux électrons d'un atome que l'émission d'un photon par un électron de la figure que vous êtes en train de regarder suivi de son absorption par un électron d'une molécule de rhodopsine dans votre rétine, qu'il amène ainsi dans un état excité, excitation ensuite transmise au cerveau. On remplace ainsi la force électromagnétique à distance par une émission et absorption de photons, chacune ponctuelle. Entre ces émissions et absorptions, photons et électrons se déplacent en ligne droite (le caractère ondulé de la ligne de photon n'est là que pour la distinguer des lignes d'électrons. On dit que le photon est le vecteur de la force électromagnétique. Les autres vecteurs de force sur la figure 3 sont les gluons g, vecteurs des interactions fortes entre les quarks, les bosons W et Z, vecteurs des interactions « faibles » responsables de la radioactivité β, et le graviton, responsable de la plus ancienne des forces connues, celle qui nous retient sur la Terre. Remarquons que l'on peut faire subir à la figure 3a une rotation de 90 degrés. Elle représente alors la formation d'un photon par une paire électron-antiélectron (ou positron), suivie par la désintégration de ce photon en une autre paire. Si on remplace le photon par un boson Z, et que celui-ci se désintègre en quark-antiquark plutôt qu'électron-positron, on obtient exactement le processus fondamental qui a engendré l'événement de la figure 2. Figure 3 Diagrammes de Feynman 3a : diffusion de deux électrons par échange d'un photon. 3b : création d'une paire électron-positron. 3c : une correction au processus 3a. La figure 3b décrit un autre processus, où le photon se désintègre en une paire électron-positron. En redéfinissant les lignes, une figure identique décrit la désintégration β du neutron par la transformation d'un quark d en quark u avec émission d'un boson W qui se désintègre en une paire électron-antineutrino. Si les « diagrammes de Feynman » de la figure 3 (du nom de leur inventeur) sont très évocateurs de ce qui se passe dans la réalité (la figure 2), il est extrêmement important de souligner qu'ils ne sont pas qu'une description heuristique des processus élémentaires d'interactions entre particules. Ils fournissent aussi des règles pour calculer ces processus avec une précision en principe presque arbitraire si on inclut un nombre suffisant de diagrammes (par exemple, le diagramme de la figure 3c est une correction à celui de la figure 3a, dans laquelle il y a une étape intermédiaire avec une paire électron-positron, qui modifie légèrement les propriétés de l'absorption, par la ligne de droite, du photon qui avait été émis par la ligne de gauche). Ces règles sont celles de la théorie quantique des champs, un cadre conceptuel et opérationnel combinant la mécanique quantique et la relativité restreinte qu'il a fallu environ 40 ans pour construire, une des difficultés principales ayant été de donner un sens aux diagrammes du genre de la figure 3c. En même temps que la dynamique des particules, cette théorie donne des contraintes sur celles qui peuvent exister, ou plutôt des prédictions d'existence sur d'autres non encore découvertes, étant données celles qu'on connaît déjà. Ce fut le cas des quarks c, b et t, et du neutrino du τ. Elle implique aussi l'existence des antiparticules pour les quarks et leptons (les vecteurs de force sont leurs propres antiparticules). Un des guides dans cette construction a été la cohérence, mais aussi l'unification par des symétries, de plus en plus grandes au fur et à mesure de la découverte de particules avec des propriétés nouvelles, et on a trouvé que cohérence et unification allaient ensemble. Avoir un principe de symétrie est puissant, car il limite et parfois détermine entièrement les choix des particules et leurs interactions, mais aussi, une fois qu'on en connaît certaines, d'autres sont déterminées. Cela permet ainsi d'appréhender avec efficacité toute cette faune. Par exemple, la symétrie entre électron et neutrino, ou entre les quarks u et d conduit à la prédiction des bosons W, mais alors on s'aperçoit immédiatement qu'en même temps il faut introduire le Z ou le photon ou les deux, et en même temps aussi leurs interactions sont déterminées. De même, le gluon et la force forte sont la conséquence d'une symétrie entre les trois « couleurs » de quarks. Ces symétries sont des rotations dans un espace interne, notion que nous allons à présent essayer d'expliciter avec une image simple en utilisant un Rubik’s cube. Un Rubik’s cube peut subir des rotations d'ensemble, que nous pouvons appeler transformations externes, et des transformations internes qui changent la configuration des couleurs de ses 9×6=54 facettes. Il faut imaginer qu'un électron ou un quark sont comme une configuration du cube, et que les symétries de la théorie sont les transformations internes qui font passer d'une configuration du cube à une autre. En fait, comme en chaque point de l'espace-temps il peut y avoir n'importe quelle particule, il faut imaginer qu'en chaque point de l'espace-temps il y a l'analogue d'un tel Rubik cube, espace « interne » des configurations de particules. Bien plus, on peut exiger que la théorie soit symétrique par rapport à l'application de transformations du cube différentes, indépendantes les unes des autres, en chaque point. On constate alors qu'on doit naturellement introduire des objets qui absorbent en quelque sorte le changement de la description de l'espace interne quand on passe d'un point à son voisin. Ces objets sont précisément les vecteurs des forces. De plus, les détails de la propagation, de l'émission et de l'absorption de ces particules vecteurs de forces sont prédits de façon à peu près unique. Il est facile d'imaginer que tout ceci fait intervenir une structure mathématique à la fois très complexe et très riche, malheureusement impossible à décrire dans le cadre de cette conférence. Un dernier ingrédient de la construction est la notion de brisure spontanée de symétrie. Car certaines des symétries dont il vient d'être question sont exactes (par exemple celle entre les « couleurs » des quarks), d'autres ne sont qu'approchées : par exemple, un électron et son neutrino n'ont pas la même masse. Dans le phénomène de brisure spontanée de symétrie, on part d'une théorie et d'équations symétriques, mais leurs solutions stables ne sont pas nécessairement symétriques chacune séparément, la symétrie faisant seulement passer d'une solution à une autre. Ainsi dans l'analogue classique d'une bille au fond d'une bouteille de Bordeaux : le problème de l'état d'équilibre de la bille au fond est symétrique par rotation, mais la position effectivement choisie par la bille ne l'est pas. Il y a une infinité de positions d'équilibre possibles, la symétrie par rotation du problème faisant seulement passer de l'une à une autre. La brisure de symétrie permet de comprendre le fait que les leptons chargés par exemple n'aient pas la même masse que leurs neutrinos associés, ou que le photon soit de masse nulle, alors que le W et le Z sont très lourds. L'ensemble de la construction trop brièvement décrite dans ce chapitre a valu le prix Nobel 1999 à Gerhardt 't Hooft et Martinus Veltman, qui en avaient été les principaux artisans dans les années 1970. À l'issue de tout ce travail, on a obtenu ce que l'on appelle le Modèle Standard. C'est l'aboutissement actuel d'unifications successives des forces, commencées par Maxwell au siècle dernier entre électricité et magnétisme (électromagnétisme) qui à présent incluent les interactions faibles : on parle des forces électrofaibles pour englober le photon et les bosons W et Z[1] . Le Modèle Standard prédit l'existence d'une particule, la seule non encore observée dans le modèle, le boson de Higgs, et comment celui-ci donne leur masse à toutes les particules par le mécanisme de brisure de symétrie. Ce dernier acteur manquant encore à l'appel fait l'objet d'une recherche intense, à laquelle le prochain accélérateur du CERN, le LHC, est dédiée. S'il décrit qualitativement et quantitativement pratiquement toutes les particules observées et leurs interactions (le « comment »), le Modèle Standard laisse sans réponse beaucoup de questions « pourquoi ». Par exemple pourquoi y a-t-il trois générations (les colonnes verticales dans la figure 1) ? Pourquoi la force électrofaible comprend-elle quatre vecteurs de force (il pourrait y en avoir plus) ? Par ailleurs toutes les masses et constantes de couplage des particules sont des paramètres libres du modèle. Il y en a une vingtaine en tout, ce qui est beaucoup : on aimerait avoir des principes qui relient ces données actuellement disconnectées. Peut-on unifier plus : y a-t-il une symétrie reliant les quarks aux leptons ? De plus, des considérations plus élaborées permettent d'affirmer que dans des domaines d'énergie non encore atteints par les accélérateurs, le modèle devient inopérant : il est incomplet, même pour la description des phénomènes pour lesquels il a été construit. Plus profondément, il laisse de côté la gravitation. La satisfaction béate ne règne donc pas encore, et nous allons dans le chapitre suivant présenter les spéculations actuelles permettant peut-être d'aller au delà. 
                                                                                        Au delà du Modèle Standard Grande unification, supersymétrie et supercordes La gravitation universelle introduite par Newton a été transformée par Einstein en la relativité générale, une théorie d'une grande beauté formelle et remarquablement prédictive pour l'ensemble des phénomènes cosmologiques. Mais il est connu depuis la naissance de la mécanique quantique que la relativité générale est incompatible avec celle-ci : quand on tente de la couler dans le moule de la théorie quantique des champs, en faisant du graviton le vecteur de la force de gravitation universelle, on s'aperçoit que les diagrammes de Feynman du type de la figure 3c où on remplace les photons par des gravitons sont irrémédiablement infinis : ceci est dû au fait que lorsqu'on somme sur toutes les énergies des états intermédiaires électron-positron possibles, les états d'énergie très grande finissent par donner une contribution arbitrairement grande, entraînant l'impossibilité de donner un sens à la gravitation quantique. La relativité générale doit être considérée comme une théorie effective seulement utilisable à basse énergie. Trouver une théorie cohérente qui reproduise la relativité générale à basse énergie s'est révélé un problème particulièrement coriace, et un premier ensemble de solutions possibles (ce qui ne veut pas dire que la réalité est parmi elles !) est apparu de manière totalement inattendue vers le milieu des années 1970 avec les théories de cordes. Dans cette construction, on généralise la notion de particule ponctuelle, élémentaire, qui nous avait guidés jusqu'à présent à celle d'un objet étendu, une corde très fine, ou plutôt un caoutchouc, qui se propage dans l'espace en vibrant. Un tel objet avait été introduit vers la fin des années soixante pour décrire certaines propriétés des collisions de protons et autres particules à interactions fortes. Il se trouve qu'il y a là un très joli problème de mécanique classique qu'Einstein lui-même aurait pu résoudre dès 1905, s'il s'était douté qu'il était soluble ! De même qu'une particule élémentaire ponctuelle, en se propageant en ligne droite à vitesse constante minimise la longueur de la courbe d'espace-temps qui est sa trajectoire, la description de la propagation et des modes de vibration d'une de ces cordes revient à minimiser la surface d'espace-temps qu'elle décrit (l'analogue d'une bulle de savon, qui est une surface minimale !), ce qui peut être effectué exactement. Le nom de corde leur a été donné par suite de l'exacte correspondance des modes de vibration de ces objets avec ceux d'une corde de piano. Quand on quantifie ces vibrations à la façon dont on quantifie tout autre système mécanique classique, chaque mode de vibration donne tout un ensemble de particules, et on sait calculer exactement les masses de ces particules. C'est là que les surprises commencent ! On découvre tout d'abord que la quantification n'est possible que si la dimension de l'espace-temps est non point quatre, mais 26 ou 10 ! Ceci n'est pas nécessairement un défaut rédhibitoire : les directions (encore inobservées ?) supplémentaires peuvent être de très petite dimension, et être donc encore passées inaperçues. On découvre simultanément que les particules les plus légères sont de masse nulle et que parmi elles il y a toujours un candidat ayant exactement les mêmes propriétés que le graviton à basse énergie. De plus, quand on donne la possibilité aux cordes de se couper ou, pour deux, de réarranger leur brins au cours d'une collision, on obtient une théorie dans laquelle on peut calculer des diagrammes de Feynman tout à fait analogue à ceux de la figure 3, où les lignes décrivent la propagation de cordes libres. Cette théorie présente la propriété d'être convergente, ce qui donne donc le premier exemple, et le seul connu jusqu'à présent, d'une théorie cohérente incluant la gravitation. Les modes d'excitation de la corde donnent un spectre de particules d'une grande richesse. La plupart sont très massives, et dans cette perspective d'unification avec la gravitation, inobservables pour toujours : si on voulait les produire dans un accélérateur construit avec les technologies actuelles, celui-ci devrait avoir la taille de la galaxie ! Seules celles de masse nulle, et leurs couplages entre elles, sont observables, et devraient inclure celles du tableau de la figure 1.

Remarquons ici un étrange renversement par rapport au paradigme de l'introduction sur l'« élémentarité » des particules « élémentaires » : elles deviennent infiniment composées en quelque sorte, par tous les points de la corde, qui devient l'objet « élémentaire » ! Au cours de l'investigation de cette dynamique de la corde au début des années 1970, on a été amené à introduire une notion toute nouvelle, celle de supersymétrie, une symétrie qui relie les particules du genre quarks et leptons (fermions) de la figure 1 aux vecteurs de force. En effet, la corde la plus simple ne contient pas de fermion dans son spectre. Les fermions ont été obtenus en rajoutant des degrés de liberté supplémentaires, analogues à une infinité de petits moments magnétiques (spins) le long de la corde. La compatibilité avec la relativité restreinte a alors imposé l'introduction d'une symétrie entre les modes d'oscillation de ces spins et ceux de la position de la corde. Cette symétrie est d'un genre tout à fait nouveau : alors qu'une symétrie par rotation par exemple est caractérisée par les angles de la rotation, qui sont des nombres réels ordinaires, cette nouvelle symétrie fait intervenir des nombres aux propriétés de multiplication très différentes : deux de ces nombres, a et b disons, donnent un certain résultat dans la multiplication a×b, et le résultat opposé dans la multiplication b×a : a×b= b×a. On dit que de tels nombres sont anticommutants. À cause de cette propriété nouvelle, et de son effet inattendu d'unifier particules et forces, on a appelé cette symétrie supersymétrie, et supercordes les théories de cordes ayant cette (super)symétrie. A posteriori, l'introduction de tels nombres quand on parle de fermions est naturelle : les fermions (l'électron en est un), satisfont au principe d'exclusion de Pauli, qui est que la probabilité est nulle d'en trouver deux dans le même état. Or la probabilité d'événements composés indépendants est le produit des probabilités de chaque événement : tirer un double un par exemple avec deux dés a la probabilité 1/36, qui est le carré de 1/6. Si les probabilités (plus précisément les amplitudes de probabilité) pour les fermions sont des nombres anticommutants, alors, immédiatement, leurs carrés sont nuls, et le principe de Pauli est trivialement satisfait ! Les extraordinaires propriétés des théories des champs supersymétriques et des supercordes ont été une motivation puissante pour les mathématiciens d'étudier de façon exhaustive les structures faisant intervenir de tels nombres anticommutants. Un exemple où on voit des mathématiques pures sortir en quelque sorte du réel. 
                                                                                         De nombreux problèmes subsistent. En voici quelques uns : - L'extension et la forme des six dimensions excédentaires : quel degré d'arbitraire y a-t-il dedans (pour l'instant, il semble trop grand) ? Un principe dynamique à découvrir permet-il de répondre à cette question ? Ces dimensions excédentaires ont-elles des conséquences observables avec les techniques expérimentales actuelles ? - La limite de basse énergie des cordes ne contient que des particules de masse strictement nulle et personne ne sait comment incorporer les masses des particules de la figure 1 (ou la brisure de symétrie qui les engendre) sans détruire la plupart des agréables propriétés de cohérence interne de la théorie. Une des caractéristiques des supercordes est d'englober toutes les particules de masse nulle dans un seul et même multiplet de supersymétrie, toutes étant reliées entre elles par (super)symétrie. En particulier donc, quarks et leptons, ce qui signifie qu'il doit exister un vecteur de force faisant passer d'un quark à un lepton, et donc que le proton doit pouvoir se désintégrer en leptons (positron et neutrinos par exemple) comme la symétrie de la force électrofaible implique l'existence du boson W et la désintégration du neutron. Or, le proton est excessivement stable : on ne connaît expérimentalement qu'une limite inférieure, très élevée, pour sa durée de vie. La brisure de cette symétrie quark-lepton doit donc être très grande, bien supérieure à celle de la symétrie électrofaible. L'origine d'une telle hiérarchie de brisures des symétries, si elle existe, est totalement inconnue. - Doit-on s'attendre à ce qu'il faille d'abord placer les cordes dans un cadre plus vaste qui permettrait à la fois de mieux les comprendre et de répondre à certaines de ces questions ? Nul ne sait. En attendant, toutes les questions passionnantes et probablement solubles dans le cadre actuel n'ont pas encore été résolues. Entre autres, les cordes contiennent une réponse à la question de la nature de la singularité présente au centre d'un trou noir, objet dont personne ne doute vraiment de l'existence, en particulier au centre de nombreuses galaxies. Également quelle a été la nature de la singularité initiale au moment du Big Bang, là où la densité d'énergie était tellement grande qu'elle engendrait des fluctuations quantiques de l'espace, et donc où celui-ci, et le temps, n'avaient pas l'interprétation que nous leur donnons usuellement d'une simple arène (éventuellement dynamique) dans laquelle les autres phénomènes prennent place. Toutes ces questions contiennent des enjeux conceptuels suffisamment profonds sur notre compréhension ultime de la matière, de l'espace et du temps pour justifier l'intérêt des talents qui s'investissent dedans. Mais ces physiciens sont handicapés par l'absence de données expérimentales qui guideraient la recherche. Le mécanisme de va et vient expérience-théorie mentionné dans l'introduction ne fonctionne plus : le Modèle Standard rend trop bien compte des phénomènes observés et observables pour que l'on puisse espérer raisonnablement que l'expérience nous guide efficacement dans le proche avenir. Mais à part des surprises dans le domaine (comme par exemple la découverte expérimentale de la supersymétrie), peut-être des percées viendront de façon complètement imprévue d'autres domaines de la physique, ou des mathématiques. Ce ne serait pas la première fois. Quelle que soit la direction d'où viennent ces progrès, il y a fort à parier que notre vision de la particule élémentaire en sera une fois de plus bouleversée.
[1] Voir la 212e conférence de l’Université de tous les savoirs donnée par D. Treille.

 

 VIDEO     canal U       LIEN

 
 
 
initiation musicale toulon  

CHAOS, IMPRÉDICTIBILITÉ, HASARD

  initiation musicale

 

 

 

 

 

 

CHAOS, IMPRÉDICTIBILITÉ, HASARD

Le monde qui nous entoure paraît souvent imprévisible, plein de désordre et de hasard. Une partie de cette complexité du monde est maintenant devenue scientifiquement compréhensible grâce à la théorie du chaos déterministe. Cette théorie analyse quantitativement les limites à la prédictibilité d'une l'évolution temporelle déterministe : une faible incertitude initiale donne lieu dans certains cas à une incertitude croissante dans les prévisions, et cette incertitude devient inacceptable après un temps plus ou moins long. On comprend ainsi comment le hasard s'introduit inévitablement dans notre description du monde. L'exemple des prévisions météorologiques est à cet égard le plus frappant. Nous verrons comment les idées à ce sujet évoluent de Sénèque à Poincaré, puis nous discuterons comment le battement d'ailes du papillon de Lorenz peut affecter la météo, donnant lieu à des ouragans dévastateurs des milliers de kilomètres plus loin. Ainsi, la notion de chaos déterministe contribue non seulement à notre appréciation pratique des incertitudes du monde qui nous entoure, mais encore à la conceptualisation philosophique de ce que nous appelons cause et de ce que nous appelons hasard.

Texte de la 218e conférence de l’Université de tous les savoirs donnée le 5 août 2000.
Chaos, imprédictibilité et hasard par David Ruelle

Pour interpréter le monde qui nous entoure nous utilisons un grand nombre de concepts très divers. Certains concepts sont concrets comme vache, puceron, papillon, d’autres abstraits comme espace, temps, hasard, ou causalité. Ces concepts sont des créations humaines : leur histoire est intimement liée à celle du langage, et leur contenu peut varier d’une culture à une autre. Nous pensons que des mots comme espace, temps, hasard, causalité correspondent à des réalités fondamentales, indépendantes de la culture où nous vivons, et même indépendantes de l’existence de l’homme. Mais il faut bien admettre que les concepts abstraits que nous venons d’énumérer ont évolué au cours de l’histoire, et que cette évolution reflète un progrès dans notre compréhension de la nature des choses. Dans ce progrès, la philosophie et la science ont joué un rôle important. Dès l’Antiquité, par exemple, les gens cultivés avaient acquis une certaine idée de l’immensité de l’univers grâce aux travaux des astronomes. Des notions comme « erratique et imprévisible » ou « peu fréquent et improbable » ont sans doute une origine préhistorique ou même antérieure au langage. En effet, une bonne appréciation des risques peut aider à la survie. Ainsi si l’orage menace il est prudent de se mettre à l’abri. En général il faut se méfier des caprices des gens et de la nature, caprices qui expriment la liberté des hommes et des choses de se comporter parfois de manière aléatoire et imprévisible. Si les notions liées au hasard et au libre choix sont d’une grande aide dans la pratique, la notion de cause est aussi une conceptualisation utile : la fumée par exemple a une cause qui est le feu. De même les marées ont une cause qui est la lune : ce n’est pas tout à fait évident, mais la chose était connue des anciens, et cette connaissance pouvait être fort utile. On peut ainsi essayer de tout expliquer comme un enchaînement plus ou moins évident de causes et d’effets. On arrive de cette manière à une vision déterministe de l’univers. Si l’on y réfléchit un peu, le déterminisme, c’est-à-dire l’enchaînement bien ordonné des causes et des effets semble en contradiction avec la notion de hasard. Sénèque qui eut la charge d’éduquer le jeune Néron se penche sur le problème dans le De Providentia et dit ceci : « les phénomènes mêmes qui paraissent le plus confus et le plus irrégulier : je veux dire les pluies, les nuages, les explosions de la foudre, ..., ne se produisent pas capricieusement : ils ont aussi leurs causes. » Cette affirmation porte en germe le déterminisme scientifique, mais, il faut bien voir que son contenu est surtout idéologique. Sénèque était un amateur d’ordre, un ordre imposé par une loi éternelle et divine. Le désordre et le hasard lui répugnaient. Cependant, comme je l’ai dit, les notions liées au hasard sont utiles, pratiquement et conceptuellement, et l’on perd peut-être plus qu’on ne gagne à les évacuer pour des motifs idéologiques. On peut d’ailleurs reprocher de manière générale aux idéologies de vouloir supprimer des idées utiles, et cela s’applique encore aux idéologies modernes, dans leurs ambitions simplificatrices et leur intolérance aux fantaisies individuelles. Mais quittons maintenant le domaine idéologique pour parler de science. Et puisque le feu est la cause de la fumée, allons voir un physico-chimiste spécialiste des phénomènes de combustion. Il nous apprendra des choses fascinantes, et nous convaincra que les problèmes de combustion sont importants, complexes, et encore mal compris. En fait si l’on s’intéresse aux problèmes de causalité et de déterminisme, plutôt que de passer sa vie à étudier les problèmes de combustion, mieux vaut choisir un problème plus simple. Par exemple celui d’une pierre jetée en l’air, surtout s’il n’y a pas d’air. On peut en effet, avec une très bonne précision, décrire par des équations déterministes la trajectoire d’une pierre jetée en l’air. Si l’on connaît les conditions initiales, c’est-à-dire la position et la vitesse de la pierre à l’instant initial, on peut calculer la position et la vitesse à n’importe quel autre instant. Au lieu d’une pierre jetée en l’air nous pouvons considérer le ballet des planètes et autres corps célestes autour du soleil, ou la dynamique d’un fluide soumis à certaines forces. Dans tous ces cas l’évolution temporelle du système considéré, c’est-à-dire son mouvement, satisfait à des équations déterministes. Si l’on veut, on peut dire que les conditions initiales d’un système sont la cause de son évolution ultérieure et la déterminent complètement. Voilà qui devrait satisfaire Lucius Annaeus Seneca. Notons quand même que le concept de cause a été remplacé par celui d’évolution déterministe, ce qui n’est pas tout à fait la même chose. Par exemple, les équations de Newton qui déterminent les mouvements des planètes permettent à partir de conditions initiales données de calculer non seulement les états futurs du système solaire, mais également les états passés. On a oublié que la cause devait précéder l’effet. En fait, l’analyse scientifique du concept de cause montre qu’il s’agit d’une notion complexe et ambiguë. Cette notion nous est très utile pour vivre dans un monde complexe et ambigu, et nous ne voudrions pas nous en passer. Cependant la science préfère utiliser des concepts plus simples et moins ambigus, comme celui d’équation d'évolution déterministe. Notons d’ailleurs que l’idée de hasard semble incompatible avec la notion d’évolution déterministe tout autant qu’avec un enchaînement bien ordonné de causes et d’effets. Nous allons dans un moment revenir à ce problème. Mais avant cela je voudrais discuter une précaution verbale que j’ai prise en parlant d’équations d’évolution déterministe valables avec une très bonne précision. Si vous demandez à un physicien des équations d’évolution pour tel ou tel phénomène, il vous demandera avec quelle précision vous les voulez. Dans l’exemple de la dynamique du système solaire, suivant la précision requise, on tiendra compte ou non du ralentissement de la rotation de la terre par effet de marée, ou du déplacement du périhélie de Mercure dû à la relativité générale. Il faudra d’ailleurs bien s’arrêter quelque part : on ne peut pas tenir compte, vous en conviendrez, des déplacements de chaque vache dans sa prairie, ou de chaque puceron sur son rosier. Même si, en principe, les déplacements de la vache et du puceron perturbent quelque peu la rotation de la terre. En Bref, la physique répond aux questions qu’on lui pose avec une précision qui peut être remarquable, mais pas absolument parfaite. Et cela n’est pas sans conséquences philosophiques, comme nous le verrons plus loin. J’ai parlé des équations d’évolution déterministes qui régissent les mouvements des astres ou ceux des fluides, de l’atmosphère ou des océans par exemple. Ces équations sont dites classiques car elles ne tiennent pas compte de la mécanique quantique. En fait la mécanique quantique est une théorie plus exacte que la mécanique classique, mais plus difficile à manier, et comme les effets quantiques semblent négligeables pour les mouvements des astres, de l’atmosphère ou des océans, on utilisera dans ces cas des équations classiques. Cependant, la mécanique quantique utilise des concepts irréductibles à ceux de la mécanique classique. En particulier la mécanique quantique, contrairement à la mécanique classique, fait nécessairement référence au hasard. Dans une discussion des rapports entre hasard et déterminisme, ne faudrait-il pas par conséquent utiliser la mécanique quantique plutôt que classique ? La situation est la suivante : la physique nous propose diverses théories plus pou moins précises et dont les domaines d’application sont différents. Pour une classe donnée de phénomènes plusieurs théories sont en principe applicables, et on peut choisir celle que l’on veut : pour toute question raisonnable la réponse devrait être la même. En pratique on utilisera la théorie la plus facile à appliquer. Dans les cas qui nous intéressent, dynamique de l’atmosphère ou mouvement des planètes, il est naturel d’utiliser une théorie classique. Après quoi il sera toujours temps de vérifier que les effets quantiques ou relativistes que l’on a négligés étaient réellement négligeables. Et que somme toute les questions que l’on s’est posées étaient des questions raisonnables. Les progrès de la physique ont montré que les équations d’évolution déterministes étaient vérifiées avec une précision souvent excellente, et parfois stupéfiante. Ces équations sont notre reformulation de l’idée d’enchaînement bien ordonné de causes et d’effets. Il nous faut maintenant parler de hasard, et essayer de reformuler ce concept en termes qui permettent l’application des méthodes scientifiques. On dit qu’un événement relève du hasard s’il peut, pour autant que nous sachions, soit se produire soit ne pas se produire, et nous avons tendance à concevoir notre incertitude à ce sujet comme ontologique et fondamentale. Mais en fait l’utilité essentielle des concepts du hasard est de décrire une connaissance entachée d’incertitude, quelles que soient les origines de la connaissance et de l’incertitude. Si je dis qu’à cette heure-ci Jean Durand a une chance sur deux d’être chez lui, je fournis une information utile : cela vaut la peine d’essayer de téléphoner à son appartement. La probabilité un demi que j’attribue au fait que Jean Durand soit chez lui reflète ma connaissance de ses habitudes, mais n’a pas de caractère fondamental. En particulier, Jean Durand lui-même sait très bien s’il est chez lui ou pas. Il n’y a donc pas de paradoxe à ce que des probabilités différentes soient attribuées au même événement par différentes personnes, ou par la même personne à des moments différents. Le hasard correspond à une information incomplète, et peut avoir des origines diverses. Il y a un siècle environ, Henri Poincaré a fait une liste de sources possibles de hasard. Il mentionne par exemple qu’au casino, c’est le manque de contrôle musculaire de la personne qui met en mouvement la roulette qui justifie le caractère aléatoire de la position où elle s’arrête. Pour des raisons historiques évidentes, Poincaré ne mentionne pas la mécanique quantique comme source de hasard, mais il discute une source d’incertitude qui a été analysée en grand détail beaucoup plus tard sous le nom de chaos et que nous allons maintenant examiner. Prenons un système physique dont l’évolution temporelle est décrite par des équations déterministes. Si l’on connaît l’état du système à un instant initial, d’ailleurs arbitraire, on peut calculer son état à tout autre instant. Il n’y a aucune incertitude, aucun hasard. Mais nous avons supposé implicitement que nous connaissions l’état initial avec une totale précision. En fait, nous ne pouvons mesurer l’état initial qu’avec une précision limitée (et d’ailleurs les équations déterministes que nous utilisons ne représentent qu’approximativement l’évolution réelle du système physique qui nous occupe). Il faut donc voir comment une petite imprécision dans notre connaissance de l’état initial au temps 0 (zéro) va affecter nos prédictions sur un état ultérieur, au temps t. On s’attend à ce qu’une incertitude suffisamment petite au temps 0 donne lieu à une incertitude petite au temps t. Mais la question cruciale est de savoir comment cette incertitude va dépendre du temps t. Il se trouve que pour beaucoup de systèmes, dits chaotiques, l’incertitude (ou erreur probable) va croître rapidement, en fait exponentiellement avec le temps t. Cela veut dire que si l’on peut choisir un laps de temps T au bout duquel l’erreur est multipliée par 2, au temps 2T elle sera multipliée par 4, au temps 3T par 8, et ainsi de suite. Au temps 10T le facteur est 1024, au temps 20T plus d’un million, au temps 30T plus d’un milliard ... et tôt ou tard l’incertitude de notre prédiction cesse d’être petit pour devenir inacceptable. Le phénomène de croissance rapide des erreurs de prédiction d’un système physique, que l’on appelle chaos , introduit donc du hasard dans la description d’un système physique, même si ce système correspond à des équations d’évolution parfaitement déterministes comme celles de la dynamique des fluides ou du mouvement des astres. Voici ce que dit Henri Poincaré dans le chapitre sur le hasard de son livre Science et Méthode publiée en 1908 : « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. » Cette affirmation, Poincaré en donne un exemple emprunté à la météorologie : « Pourquoi Les météorologistes ont-ils tant de peine à prédire le temps avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien des gens trouvent tout naturel de prier pour avoir de la pluie ou du beau temps, alors qu’ils jugeraient ridicule de demander une éclipse par une prière ? Nous voyons que les grandes perturbations se produisent généralement dans les régions où l’atmosphère est en équilibre instable. Les météorologistes voient bien que cet équilibre est instable, qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de la dire ; un dixième de degré en plus ou en moins en un point quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième de degré, on aurait pu le savoir d’avance, mais les observations n’étaient ni assez serrées ni assez précises, et c’est pour cela que tout semple dû à l’intervention du hasard. » Les affirmations de Poincaré sur la météorologie dépassent, il faut bien le dire, ce que la science du début du 20-ième siècle permettait d’établie scientifiquement. Les intuitions géniales de Poincaré ont été confirmées, mais on trouverait sans peine des intuitions d’autres savants qui se sont révélées fausses. Il est donc heureux que, après avoir été oubliées, les idées de Poincaré aient été redécouvertes, étendues, et soumises à une analyse scientifique rigoureuse. Cette nouvelle période commence avec un article de Lorenz relatif à la météorologie en 1963, un article de Takens et moi-même sur la turbulence en 1971, puis une foule de travaux dans les années 70, 80, 90 qui édifient la théorie moderne du chaos. Le mot chaos lui-même apparaît dans son sens technique en 1975. Il n’est possible de donner ici qu’une vue très sommaire des aspects techniques de la théorie du chaos, mais j’insiste sur le fait que les résultats techniques sont essentiels. Ces résultats permettent de changer l’affirmation du sens commun suivant laquelle « de petites causes peuvent avoir de grands effets » en affirmations quantitatives comme celle concernant l’effet papillon dont nous parlerons dans un moment. La théorie du chaos étudie donc en détail comment une petite incertitude sur l’état initial d’une évolution temporelle déterministe peut donner lieu à une incertitude des prédictions qui croît rapidement avec le temps. On dit qu’il y a dépendance sensitive des conditions initiales. Cela veut dire que de petites causes peuvent avoir de grands effets, non seulement dans des situations exceptionnelles, mais pour toutes les conditions initiales. En résumé, le terme chaos désigne une situation où, pour n’importe quelle condition initiale, l’incertitude des prédictions croît rapidement avec le temps. Pour donner un exemple, considérons un faisceau de rayons lumineux parallèles tombant sur un miroir convexe. Après réflexion, nous avons un faisceau divergent de rayons lumineux. Si le faisceau initial était divergent, il serait encore plus divergent après réflexion. Si au lieu de rayons lumineux et de miroir nous avons une bille de billard qui rebondit élastiquement sur un obstacle convexe, la situation géométrique est la même, et on conclut qu’une petite incertitude sur la trajectoire de la bille avant le choc donne lieu à une incertitude plus grande après le choc. S’il y a plusieurs obstacles convexes que la bille heurte de façon répétée, l’incertitude croît exponentiellement, et on a une évolution temporelle chaotique. Cet exemple était connu de Poincaré, mais ce n’est que bien plus tard qu’il a été analysé de manière mathématiquement rigoureuse par Sinaï. Comme l’étude mathématique des systèmes chaotiques est d’une grande difficulté, l’étude du chaos combine en fait trois techniques : les mathématiques, les simulations sur ordinateur, et l’expérimentation (au laboratoire) ou l’observation (de l’atmosphère, des astres). Notons que les simulations sur ordinateur n’existaient pas du temps de Poincaré. Ces simulations ont joué un rôle essentiel en montrant que les systèmes déterministes tant soit peu complexes présentent fréquemment de la sensitivité aux conditions initiales. Le chaos est donc un phénomène très répandu. La météorologie fournit une application exemplaire des idées du chaos. En effet, on a de bons modèles qui décrivent la dynamique de l’atmosphère terrestre. L’étude par ordinateur de ces modèles montre qu’ils sont chaotiques. Si l’on change un peu les conditions initiales, les prédictions après quelques jours deviennent assez différentes : on a atteint la limite de la fiabilité du modèle. Bien entendu les prédictions faites avec ces modèles décollent après quelques jours de la réalité observée, et l’on comprend maintenant pourquoi : le chaos limite la prédictibilité du temps qu’il va faire. Le météorologiste Ed Lorenz, que nous avons déjà mentionné, a rendu populaire le concept de sensitivité aux conditions initiales sous le nom d’effet papillon. Dans un article grand public, il explique comment le battement des ailes d’un papillon, après quelques mois, a un tel effet sur l’atmosphère de la terre entière qu’il peut donner lieu à une tempête dévastatrice dans une contrée éloignée. Cela rappelle ce qu’écrivait Poincaré, mais paraît tellement extrême qu’on peut se demander s’il faut accorder à l’effet papillon plus qu’une valeur métaphorique. En fait, il semble bien que l’affirmation de Lorenz doit être prise au pied de la lettre. On va considérer la situation où le papillon bat des ailes comme une petite perturbation de la situation où il se tiendrait tranquille. On peut évaluer l’effet de cette petite perturbation en utilisant le caractère chaotique de la dynamique de l’atmosphère. (Rappelons que les modèles de l’atmosphère terrestre montrent une dynamique chaotique aux grandes échelles ; aux petites échelles, on a aussi du chaos à cause de la turbulence généralisée de l’air où nous baignons). La perturbation causée par le papillon va donc croître exponentiellement, c’est-à-dire très vite, et l’on peut se convaincre qu’au bout de quelques mois l’état de l’atmosphère terrestre aura changé du tout au tout. De sorte que des lieux éloignés de celui où se trouvait le papillon seront ravagés par la tempête. La prudence m’incite à prendre ici quelques précautions verbales. Il s’agit d’éviter qu’un doute sur un point de détail ne jette le discrédit sur des conclusions par ailleurs bien assurées. On peut se demander comment des perturbations aux petites dimensions (comme la dimension d’un papillon) vont se propager aux grandes dimensions (comme celle d’un ouragan). Si la propagation se fait mal ou très mal, peut-être faudra-t-il plus que quelques mois pour qu’un battement d’ailes de papillon détermine un ouragan ici ou là. Cela rendrait l’effet papillon moins intéressant. A vrai dire, la turbulence développée reste mal comprise et la conclusion de Lorenz reste donc un peu incertaine. L’image du papillon est jolie cependant, il serait dommage qu’on doive l’enterrer et, jusqu’à plus ample informé, j’y reste personnellement attaché. Quoi qu’il en soit, la circulation générale de l’atmosphère n’est pas prédictible plusieurs mois à l’avance. C’est un fait bien établi. Un ouragan peut donc se déclencher ici ou là de manière imprévue, mais cela dépendra peut-être d’incertitudes autres que les battements d’ailes d’un papillon. Si l’on y réfléchit un instant, on voit que le déclenchement d’une tempête à tel endroit et tel moment résulte d’innombrables facteurs agissant quelques mois plus tôt. Que ce soient des papillons qui battent des ailes, des chiens qui agitent la queue, des gens qui éternuent, ou tout ce qui vous plaira. La notion de cause s’est ici à ce point diluée qu’elle a perdu toute signification. Nous avons en fait perdu tout contrôle sur l’ensemble des « causes » qui, a un instant donné, concourent à ce qu’une tempête ait lieu ou n’ait pas lieu ici ou là quelques mois plus tard. Mêmes des perturbations infimes dues à la mécanique quantique, à la relativité générale, ou à l’effet gravitationnel d’un électron à la limite de l’univers observable, pourraient avoir des résultats importants au bout de quelques mois. Aurions-nous dû en tenir compte ? Il est clair qu’on n’aurait pas pu le faire. L’effet de ces perturbations infimes peut devenir important après quelques mois, mais un mur d’imprédicibilité nous interdit de le voir. Pour l’atmosphère terrestre, ce mur d’imprédicibilité est situé à quelques jours ou semaines de nous dans le futur. Je voudrais revenir brièvement à mon implication personnelle dans l’histoire du chaos. A la fin des années 60, je m’étais mis à l’étude de l’hydrodynamique, qui est la science de l’écoulement des fluides. Certains des écoulements que l’on observe sont tranquilles et réguliers, on les dit laminaires, d’autres sont agités et irréguliers, on les dit turbulents. Les explications de la turbulence que j’avais trouvées, en particulier dans un livre de Landau et Lifschitz sur l’hydrodynamique, ne me satisfaisaient pas, car elles ne tenaient pas compte d’un phénomène mathématique nouveau, dont j’avais appris l’existence dans les travaux de Smale. Quel est ce phénomène ? C’est l’abondance d’évolutions temporelles de nature étrange, avec dépendance sensitive des conditions initiales. Je m’étais alors convaincu que la turbulence devait être liée à une dynamique « étrange ». Dans un article joint avec Takens nous avons proposé que la turbulence hydrodynamique devait être représentée par des attracteurs étranges, ou chaotiques, et étudié le début de la turbulence, ou turbulence faible. Par la suite, de nombreux travaux expérimentaux ont justifié cette analyse. Cela ne résout pas le problème de la turbulence, qui reste l’un des plus difficiles de la physique théorique, mais on sait au moins que les théories « non chaotiques » jadis à l’honneur ne peuvent mener à rien. Quand le chaos est devenu à la mode, il a donné lieu à d’innombrables travaux. Certains de ces travaux développaient les aspects techniques de la théorie du chaos, et il n’est pas question d’en parler ici, d’autres analysaient diverses classes de phénomènes naturels dans l’espoir d’y trouver un comportement chaotique. C’est ainsi que j’ai proposé qu’il devait y avoir des oscillations chimiques chaotiques, ce qui effectivement a été démontré par l'expérience dans la suite. Ce fut une période féconde où, en réfléchissant un peu, on pouvait faire des découvertes d’un intérêt durable. Toutes les idées n’ont d’ailleurs pas été également bonnes. Ainsi, des essais d’application du chaos à l’économie et à la finance se sont révélés moins convaincants ; j’y reviendrai. Mais quand Wisdom et Laskar ont cherché du chaos dans la dynamique du système solaire, ils ont eu la main remarquablement heureuse. Le mouvement des astres du système solaire semble extraordinairement régulier, puisque l’on peut par le calcul prédire les éclipses, ou retrouver celles qui ont eu lieu, il y a plus de mille ans. On a donc longtemps pensé que le mouvement des planètes, et en particulier de la Terre, était exempt de chaos. On sait maintenant que c’est faux. L’orbite de la Terre est une ellipse dont les paramètres varient lentement au cours du temps, en particulier l’excentricité, c’est-à-dire l’aplatissement. En fait on a maintenant montré que la variation temporelle de l’excentricité est chaotique. Il y a donc de l’imprédicibilité dans le mouvement de la Terre. Le temps nécessaire pour que les erreurs de prédiction doublent est de l’ordre de 5 millions d’années. C’est un temps fort long par rapport à la vie humaine, mais assez court à l’échelle géologique. Le chaos que l’on a trouvé dans le système solaire n’est donc pas sans importance, et les travaux dans ce domaine se poursuivent activement, mais ce n’est pas ici le lieu d’en discuter. Les résultats accumulés depuis plusieurs décennies nous ont donné une assez bonne compréhension du rôle du chaos en météorologie, en turbulence hydrodynamique faible, dans la dynamique du système solaire, et pour quelques autres systèmes relativement simples. Qu’en est-il de la biologie, de l’économie, de la finance, ou des sciences sociales ? Il faut comprendre que les modélisations utiles dans le domaine du vivant sont assez différentes de celles qui nous satisfont pour des systèmes physiques simples. Les relations du hasard et la nécessité sont d’une autre nature. En fait le domaine du vivant est caractérisé par l’homéostasie qui maintient les organismes dans des conditions appropriées à la vie. L’homéostasie tend par exemple à maintenir la température de notre corps dans d’étroites limites. Elle supprime les fluctuations thermiques et est donc de nature antichaotique. La correction des fluctuations apparaît aussi au niveau du comportement individuel : un projet de voyage est maintenu même si une panne de voiture ou une grève fortuites obligent à changer de moyen de transport. Il s’agit ici de processus correctifs compliqués et qu’il est difficile de représenter par des modèles dynamiques simples auxquels on pourrait appliquer les techniques de la théorie du chaos. Clairement, de petites causes peuvent avoir de grands effets dans la vie de tous les jours, mais aux mécanismes causateurs de chaos s’ajoutent des mécanismes correcteurs, et il est difficile de débrouiller la dynamique qui en résulte. Dans le domaine de l’économie, de la finance ou de l’histoire, on voit aussi que des causes minimes peuvent avoir des effets importants. Par exemple une fluctuation météorologique peut causer la sécheresse dans une région et livrer sa population à la famine. Mais des mécanismes régulateurs effaceront peut-être l’effet de la famine, et l’histoire poursuivra son cours majestueux. Peut-être, mais ce n’est pas certain. Une guerre obscure en Afghanistan a précipité la chute du colossal empire Soviétique. Cette guerre obscure a concouru avec de nombreuses autres causes obscures à miner un empire devenu plus instable qu’on ne le pensait. En fait nous vivons tous dans un monde globalement instable : la rapidité des transports, la transmission presque instantanée de l’information, la mondialisation de l’économie, tout cela améliore peut-être le fonctionnement de la société humaine, mais rend aussi cette société plus instable, et cela à l’échelle de la planète. Une maladie virale nouvelle, ou un virus informatique, ou une crise financière font sentir leurs effets partout et immédiatement. Aujourd’hui comme hier le futur individuel de chaque homme et chaque femme reste incertain. Mais jamais sans doute jusqu’à présent l’imprédictibilité du futur n’a affecté aussi globalement notre civilisation tout entière.

 

  VIDEO       CANAL  U         LIEN

 
 
 
initiation musicale toulon  

EINSTEIN AUJOURD'HUI

  initiation musicale

 

 

 

 

 

 

EINSTEIN AUJOURD'HUI


Parce qu'il est universellement célèbre, tout le monde croit connaître Einstein. Les physiciens, à cet égard, ne font pas exception à la règle. On va répétant à l'envie les mêmes lieux communs sur l'effet qu'ont eu les découvertes d'Einstein sur le cours de la physique, sur la manière dont il est parvenu à établir sa théorie, ou plutôt ses théories. Pire : on continue à enseigner la physique d'avant Einstein, la physique “classique” comme s'il n'avait pas modifié le point de vue que les physiciens portent dans leur pratique quotidienne sur leur propre discipline. Dans cette conférence, je tenterai de replacer l'apport d'Einstein dans le contexte de la fin du dix-neuvième siècle — ce qui, inévitablement m'amènera à parler des contributions de Poincaré et Lorentz à la théorie dite de la relativité restreinte : Einstein n'est ni cet extra-terrestre venu révolutionner la physique presque malgré elle que l'on a trop souvent dépeint, ni cet imposteur que certains briseurs d'idoles aimeraient faire descendre de son piédestal usurpé. Je soutiendrai la thèse que c'est sur la question des “principes”, leur définition, leur nécessité et leur force de contrainte que, d'un point de vue épistémologique, l'intervention d'Einstein dans la physique s'est principalement fait sentir.

Texte de la 577 e conférence de l'Université de tous les savoirs prononcée le 20 juin
2005
Par Françoise Balibar: « Einstein aujourd'hui »


On célèbre en cette année 2005 le centenaire de ce qu'il est convenu d'appeler l'annus mirabilis d'Einstein. Année miraculeuse en effet, puisque Einstein, alors âgé de 26 ans, publia cinq articles qui tous, à des degrés divers, ont bouleversé le cours de la physique. Le premier en date, paru en mars 1905, est le seul qu'Einstein lui-même ait qualifié de « révolutionnaire » ; il y explique que dans certaines situations expérimentales, la lumière que tout le monde considère comme une onde, sur le modèle des rides qui se propagent à la surface de l'eau, doit plutôt être assimilée à un ensemble de grains d'énergie - ce que plus tard, en 1922, on appellera des photons -- autrement dit des grains de lumière qui sillonnent l'espace.
A la fin du mois de juin de cette même année, Einstein envoie un deuxième article à la prestigieuses revue allemande Annalen der Physik, intitulé « Electrodynamique des corps en mouvement » -- titre devenu ésotérique mais qui « parlait » aux physiciens contemporains car c'était une question largement débattue (j'y reviendrai). Cet article, publié en septembre, n'est autre que l'article fondateur de la théorie einsteinienne de la relativité restreinte - théorie qui, prolongée en 1916 par celle de la relativité générale, a rendu son auteur célèbre, au point que son nom est désormais associé au mot « relativité ». Un troisième article, paru peu de temps après le précédent, en est une sorte de post-scriptum de deux pages qui se termine, non pas par la trop fameuse formule E = m c2, mais par la véritable expression de l'équivalence entre masse et énergie : DE = Dm c2 -- le symbole D désignant, de façon conventionnelle en physique, la variation d'une grandeur - en l'occurrence, l'énergie d'un système physique et sa masse : à toute variation de la masse d'un système correspond une variation de son contenu énergétique, et inversement.
Et de trois (articles). Entre-temps, toujours en 1905, Einstein avait publié un quatrième article, dont on parle relativement peu mais qui a eu une importance historique énorme ; il s'agit d'une étude portant sur le mouvement brownien (mouvement désordonné de particules en suspension, observé au microscope pour la première fois par le biologiste Brown -- d'où son nom -- que plus trivialement chacun a pu admirer dans une forêt lorsqu'un rayon de soleil passe entre les arbres et que l'on voit danser des grains de pollen dans la lumière. Dans cet article, Einstein proposait d'expliquer ce mouvement désordonné de particules relativement grosses (« visibles», à l'Sil nu ou au microscope) comme résultant du choc de ces grains sur des particules beaucoup plus petites, les atomes (« invisibles » à l'époque, puisque ce n'est que dans les années 1980 qu'on a pu les observer, de façon indirecte). La relation établie par Einstein dans cet article ayant été vérifiée expérimentalement par Jean Perrin quelques années plus tard, les travaux conjugués d'Einstein et Perrin apparurent alors comme la preuve, indirecte évidemment, de l'existence des atomes. Il n'est pas inutile de rappeler -- tant on a peine à le croire aujourd'hui -- qu'il y a cent ans, certains physiciens, et non des moindres, niaient encore l'existence des atomes ; on parlait couramment d' « hypothèse atomique », pour souligner que les atomes n'étaient qu'une vue de l'esprit. C'est cette position sceptique que les travaux d'Einstein et de Perrin ont rendue intenable ; depuis, la réalité atomique ne fait plus de doute.
Quant au cinquième article publié par Einstein en 1905, c'est d'une certaine façon le plus fondamental, puisque c'est sur les résultats qui y sont exposés que s'appuient les quatre autres (plus ou moins directement). Il s'agit de son travail de thèse (25 pages, chose impensable aujourd'hui où un minimum de 300 pages est requis pour la moindre thèse), dans lequel il développait une nouvelle manière de considérer les liens entre les niveaux microscopique (celui des atomes) et macroscopique (à notre échelle, cette échelle incluant les choses vues au microscope). Cette méthode n'était pas entièrement originale, même si Einstein croyait faire Suvre de novateur ; mais elle allait à l'encontre des idées reçues - raison pour laquelle, il avait eu des démêlés avec son directeur de thèse.

***
Je l'ai déjà dit, l'article de mars 1905 est sans conteste le plus « révolutionnaire ». On peut même soutenir que cet article, en proposant de la lumière une conception radicalement nouvelle, a mis Einstein sur la voie de sa théorie de la relativité restreinte (article de septembre). C'est du moins la thèse que je vais défendre ici ; ce qui, m'amènera à préciser en quoi la théorie de la relativité restreinte d' Einstein diffère de celle élaborée par d'autres physiciens plus chevronnés, Lorentz et Poincaré.
L'article que publie Einstein en mars 1905 porte le titre « Sur un point de vue heuristique concernant l'émission et la production de lumière ». Il est rare de voir figurer l'adjectif « heuristique » (« qui sert à la découverte » indique le Robert de poche) dans un texte scientifique, encore plus rare dans le titre d'un tel texte. La physique (la science) moderne est plus positive que cela : aujourd'hui, il n'est ni concevable ni convenable de prendre la plume pour indiquer une éventuelle piste de recherche, développer un « point de vue » ; on préfère généralement « proposer une hypothèse » ; la physique n'est ni un jeu de pistes ni une affaire de point de vue. Il est rare aussi qu'un article scientifique commence par des considérations philosophiques, même triviales, du genre : « la théorie physique, telle qu'elle a été développée jusqu'à présent est marquée par une profonde division entre continu et discontinu ». C'est pourtant de cette division que prend acte Einstein dans les premières lignes de son article. Division entre d'une part, une physique dont les concepts relèvent du discontinu -- ceux de particule, trajectoire, position implicitement « ponctuelle » sur cette trajectoire à un instant donné --, qui rend compte de la matière pondérable, « matérielle », constituée d' « atomes » ou, comme l'on disait alors, de « molécules » (la différence entre atomes et molécules n'étant pas encore bien établie) et d'autre part, une physique dont les concepts relèvent du continu -- onde, champ, emplissant tout l'espace à un instant donné, se propageant de façon « frontale », comme une vague déferlant sur une plage (en Anglais onde et vague se disent de la même façon : wave) --, qui rend compte de cette autre partie du monde physique qu'est la lumière, impalpable, impondérable. Or, poursuit Einstein, chacun peut constater que la lumière est émise et absorbée par la « matière ». La théorie actuelle, dans la mesure où elle décrit le monde à l'aide de concepts totalement incompatibles entre eux (le discontinu et le continu sont des notions antithétiques) n'est pas outillée pour rendre compte de ce fait pourtant fondamental : la production et l'absorption de lumière par la matière, la formation de continu à partir de discontinu, et inversement l'absorption du continu dans du discontinu.
Arrêtons-nous un instant pour apprécier à sa juste valeur le « culot » (mais peut-être vaudrait -il mieux dire, la maîtrise intellectuelle) d'un jeune homme de 26 ans -- diplômé certes (Einstein sort de l'Ecole Polytechnique de Zürich, la meilleure « grande école » européenne à l'époque, n'en déplaise à « notre » Ecole Polytechnique) mais pour l'heure employé au Bureau des Brevets de Berne --, envoyant pour publication un article au titre si peu conforme, où il se paie le luxe de développer des considérations philosophiques, que l'on serait tenté de qualifier de simplistes si elles ne touchaient pas juste. Comme quoi un peu de philosophie, même naïve, vaut mieux que force ni que rage calculatoires.
S'il est vrai que l'on ne fait pas de continu avec du discontinu (et inversement), il n'en reste pas moins qu'en ce qui concerne la matière (mais uniquement elle), certains physiciens -- ceux précisément qui sont convaincus que la matière au niveau microscopique est faite d' « atomes » (et Einstein, à l'Ecole Polytechnique, a été formé par de tels physiciens) -- ont développé à la fin du XIXème siècle des techniques statistiques qui, prenant appui sur l'extrême grandeur du nombre d' « atomes » (ou « molécules ») contenus dans un gramme de matière, permettent de remonter du niveau microscopique (discontinu) au niveau macroscopique (à notre échelle où la matière semble continue) ; et ce, dans une branche bien particulière de la physique, la thermodynamique.
La thermodynamique, science de la chaleur, étudie les transformations que subit la matière lorsque la température qu'on lui impose varie, et ceci, indépendamment de sa constitution intime (atomique ou autre). La mécanique statistique, mécanique en ceci qu'elle traite de particules (puisqu'elle repose sur l' « hypothèse atomique » concernant la matière) et statistique en ce qu'elle applique les lois des grands nombres, a été développée à la fin du siècle, par Maxwell en Grande- Bretagne et Boltzmann dans le monde germanique. Pour ceux qui ne demandent qu'à être convaincus, elle est la preuve de la « réalité » des atomes (bien avant l'article d'Einstein sur le mouvement brownien), car elle permet de retrouver les principaux résultats de la thermodynamique, sur la base précisément de l'hypothèse atomique. On ne saurait trop insister sur l'importance d'un tel résultat - qui a fortement impressionné l'étudiant Einstein lorsqu'on le lui a enseigné ( Boltzmann, der grossartig, le magnifique, note-t-il à peu de temps de là). Au point que c'est sur les traces de Boltzmann qu'Einstein ose son premier pas théorique audacieux : il décide d'appliquer à la lumière les méthodes statistiques qui se sont révélées si fructueuses dans le cas de la matière. La démarche est audacieuse car elle suppose implicitement que ce qui vaut pour la matière vaut pour la lumière, autrement dit que matière et lumière sont régies par les mêmes principes théoriques. On voit bien que ce qui est en jeu ici, c'est l'unité de la Nature.


Einstein entreprend donc de comparer du point de vue de la mécanique statistique deux situations qu'il suppose analogues, à savoir d'une part, des « molécules » enfermées dans une boîte portées à une certaine température (ce qu'on appelle traditionnellement « un gaz parfait ») et d'autre part, du rayonnement lumineux, également enfermé dans une boîte et porté à une certaine température (dénommé « corps noir »). Plus techniquement, il choisit de calculer, dans l'une et l'autre situation, la variation d'entropie (DS) lors d'une réduction du volume de la boîte (de V0 à V), à température constante. Or l'entropie est précisément une de ces grandeurs thermodynamiques, exprimables à l'aide des grandeurs thermodynamiques macroscopiques (énergie, volume, température etc.) dont la mécanique statistique fournit (dans le cas de la matière) une interprétation (et une formulation) en termes microscopiques, faisant intervenir, en particulier, le nombre (N) des « molécules » du système considéré. Après avoir calculé la variation d'entropie, par la méthode statistique pour les « molécules » et par la thermodynamique pour le rayonnement, Einstein constate que les expressions ont la même forme mathématique, en logarithme (noté ln), dans les deux cas (gaz parfait et corps noir) et, plus intéressant, que la place qu'occupe N le nombre de « molécules » dans la formule relative à la matière est occupée dans le cas de la lumière par le rapport de deux grandeurs : l'énergie totale du « corps noir » (E ) et une autre grandeur (e) liée à la fréquence du rayonnement.
Einstein accomplit alors un deuxième geste audacieux, dont la force heuristique tient à ce qu'il est parfaitement conforme à la nature du rapport aux mathématiques qui, depuis Galilée, constitue la physique comme mathématisation de la Nature. Einstein, en effet, conclut de l'identité des places occupées dans une même formule mathématique par deux quantités (un nombre dans un cas, un rapport entre deux grandeurs, dans l'autre) à l'identité de nature physique de ces deux quantités. Or le nombre N qui figure dans la formule du gaz parfait n'est pas n'importe quel nombre, c'est un nombre de « molécules », donc un nombre entier. Conclusion d'Einstein : le rapport E/e qui occupe la même place dans la formule relative à la lumière doit nécessairement être une grandeur de même nature physique, donc, lui aussi, un nombre entier. Autrement dit : l'énergie macroscopique du rayonnement E est structurée en grains et e, la quantité qui figure en dénominateur du rapport en question est l'énergie individuelle de chacun de ces grains. De l'identité des places occupées dans une formule mathématique, circonstance que d'autres auraient peut-être considérée comme fortuite, sans signification, ne nécessitant pas d'être interprétée, Einstein, convaincu que les mathématiques « parlent le langage de la nature », déduit une propriété fondamentale de la structure de la réalité : la lumière est granulaire, quantifiée comme l'on dit.


DS = variation de l'entropie du système lorsque le volume de la boîte passe de V0 à V
Dans le cas de la matière (gaz parfait constitué de N « molécules »), N est entier :

DS = k ln (V/ V0)N
Dans le cas du rayonnement (corps noir d'énergie totale E) :

DS = k ln (V/ V0)E/e
où e est une quantité que le calcul indique être proportionnelle à la fréquence du rayonnement.

L'identité de forme mathématique implique que
E/ e = nombre entier.
L'énergie totale du rayonnement contenu dans le « corps noir » est la somme d'un nombre de quanta (mot qui en allemand, comme en latin, signifie une quantité unité) d'énergie e :
E = (Nombre entier) e
.
Le degré de technicité mathématique requis par une telle « découverte » est nul. En revanche, ce que l'on y voit fonctionner à l'état pur, c'est le fameux « sens physique », toujours invoqué, jamais précisément décrit. De cet exemple, on serait tenté de conclure que le « sens physique » n'est que l'expression d'une profonde conviction intime, quasi inconsciente, comme « une pensée de derrière la tête » toujours active, en l'occurrence l'idée que le livre de la Nature est écrit en termes mathématiques. On peut aussi remarquer que le « sens physique », une fois exprimé, paraît incontestable, il est porteur de consensus ; c'est en quelque sorte le « common sense » des physiciens, ce sur quoi ils s'accordent. Einstein, malgré son jeune âge, le dit clairement quand, commentant « sa » relation de quantification de l'énergie lumineuse, il se déclare ouvert à la discussion, tout en notant que l'identité de structure des formules, qu'il a mise en évidence ne peut, en tout état de cause, rester sans explication : une identité mathématique correspond nécessairement à une propriété de la réalité physique ; et cela, personne ne le lui contestera.


****

Mais revenons à Einstein, en ce début d'année 1905. Il n'a pas réussi à obtenir un poste universitaire et il gagne sa vie en examinant des brevets durant les heures de bureau. Situation qu'il décrira par la suite comme idéale : un poste universitaire lui aurait laissé moins de loisirs pour réfléchir à des questions qui le tarabustent depuis l'âge de quinze ans et qui se trouvent être aussi au centre des préoccupations des physiciens plus âgés, engagés dans la vie professionnelle. Ces questions portent sur la nature de la lumière (en ce sens, son premier article s'y rattache), plus précisément au rapport entre lumière et mouvement. Le mouvement est une catégorie que la physique a redéfini à sa naissance (ou sa re-naissance au début du XVIIème siècle) comme le déplacement d'un corps (conçu comme un assemblage de particules, relevant du discontinu donc) d'une position d'espace à une autre, sans que le corps en question soit altéré. La catégorie de mouvement ne s'applique pas, en principe, à la lumière. Pourtant, la lumière, pensée comme une onde qui se propage, dont le « front » atteint au fur et à mesure que le temps s'écoule des régions de l'espace de plus en plus éloignées, se « déplace » elle aussi. Ce qui amène à définir une vitesse-de-propagation, qu'il est tentant d'abréger en « vitesse » tout court, terme qui, en toute rigueur, devrait être réservé au mouvement des corps matériels et qui se trouve ici appliqué à la lumière, immatérielle en quelque sorte. Le problème auquel songe Einstein depuis son adolescence est le suivant : comment verrais-je le monde si je me déplaçais (en tant que corps matériel, évidemment) à une vitesse égale à la « vitesse » de la lumière ? Autrement dit : comment se combinent la vitesse d'un corps et la « vitesse » de la lumière » ? S'ajoutent-elles algébriquement comme c'est le cas pour deux vraies vitesses (celles de deux corps matériels) ? A quelle « vitesse » arriverait dans mon Sil une onde lumineuse émise par un objet vers lequel je me dirigerais moi-même avec une vitesse égale à la « vitesse » de la lumière ?
A cette question, la physique de la fin du XIXème siècle, en l'espèce la théorie électromagnétique de la lumière élaborée par Maxwell, a déjà apporté une réponse... dont le seul inconvénient est qu'elle induit une myriade de questions. Cette réponse est la suivante : la lumière arriverait dans l'Sil du jeune Einstein avec la même « vitesse » que s'il était immobile. Ce qui revient à dire que la lumière jouit d'une propriété pour le moins bizarre : sa « vitesse » reste la même quand elle est combinée à n'importe qu'elle vitesse vraie (celle d'un corps). En complet désaccord avec la manière dont se comportent en général les vitesses (vraies) qui s'ajoutent (algébriquement) : si, dans un train, je me déplace à la vitesse de 4 km/h dans le sens du mouvement du train, lequel roule à une vitesse de 150 km/h, ma vitesse par rapport au remblai des voies est de 154 km/h.
Dans la théorie de Maxwell, cette singularité de la « vitesse » de la lumière s'explique par la nature même de la lumière. La lumière est un champ électromagnétique. Dire qu'elle est un « champ », c'est dire qu'elle est représentée par une grandeur définie en tout point de l'espace et à chaque instant. Dire que ce champ est « électromagnétique », c'est dire qu'il est constitué de la combinaison de deux champs, électrique et magnétique, qui non seulement sont indissociables mais en outre s'engendrent l'un l'autre au cours du temps, assurant ainsi la propagation de l'ensemble dans l'espace au cours du temps ... à la « vitesse » de la lumière (généralement notée c). Mais un champ, qu'est-ce que c'est ? Pour Maxwell, il est clair qu'un champ désigne nécessairement l'état d'un milieu matériel. Ceci par analogie avec la théorie du son où ce qui se propage est la compression des couches d'air ébranlées de proche en proche ; le champ est alors une représentation de l'état de compression du milieu que constitue l'air. Pour Maxwell, un champ ne peut pas se propager dans le vide (l'exemple du son est à cet égard probant) ; il lui faut nécessairement un milieu de propagation. A ce milieu, Maxwell donne, dans le cas de la lumière, le nom d' « éther luminifère », raccourci en « éther ». La « vitesse » de la lumière est alors la vitesse de propagation dans l'éther. Que cette vitesse soit absolue (elle n'est pas modifiée si on la combine avec une autre) reste à comprendre.
L'« explication » donnée par la physique de la fin du siècle pose, de façon générale, plus de questions qu'elle n'en résout, selon la formule consacrée. Elle est en effet en contradiction flagrante avec ce que l'on commence à appeler « le principe de relativité » (je l'analyserai dans un instant), lequel ne date pas d'hier puisque c'est sur ce principe que s'est élevée la physique galiléo -newtonienne, physique des corpuscules, physique de la matière. L'interrogation déjà signalée plus haut (à propos de l'application de la mécanique statistique à la lumière) ressurgit ici : ce qui vaut pour la matière vaut-il, oui ou non, pour la lumière ? La lumière doit-elle, comme la matière, être soumise au principe de relativité ? Pour Einstein, comme pour la plupart des physiciens et souvent pour des raisons diverses, la réponse est oui.
Le moment est venu d'énoncer ce principe. Il définit une classe de « référentiels » « équivalents ». Deux mots qui méritent d'être expliqués. « Référentiels » désigne de façon raccourcie un « corps de référence » (matérialisant un trièdre trirectangle, généralement) assorti d'une horloge - ce qui permet de définir un système de coordonnées spatio-temporelles (3 d'espace et une de temps). L' « équivalence » dont il s'agit porte sur les « lois de la nature ». (Ce n'est pas le lieu de disserter sur ce que sont les lois de la nature et pourquoi elles portent le nom de « lois » ; d'autant que les choses se tiennent : le principe de relativité contribue à définir ce qu'il faut entendre par « lois de la nature ».) Dire que deux référentiels sont équivalents, c'est dire que les lois de la nature y sont les mêmes. Le principe de relativité énonce qu'il existe bel et bien des référentiels de ce type, formant une classe d'équivalence (vis-à-vis des lois de la nature). Mathématiquement, cela signifie qu'une même loi de la nature prend la même forme dans tous les référentiels de la classe en question. Tel est l'énoncé le plus général du principe de relativité. La relativité dite restreinte correspond à la restriction suivante : les référentiels équivalents se déduisent les uns des autres par une opération de translation rectiligne uniforme. En termes simples, le principe de relativité restreinte énonce que les lois de la physique sont les mêmes dans tous les référentiels qui sont en translation rectiligne uniforme les uns par rapport aux autres. En termes mathématiques, cela revient à dire que, lors de la transformation des coordonnées spatio-temporelles attachées à un référentiel en celles attachées à un autre en translation rectiligne uniforme par rapport au premier, la forme mathématique des lois de la nature reste inchangée. En termes concrets, le principe de relativité se traduit par le fait que le café, qu'une hôtesse de l'air sert à bord d'un avion ayant pris son allure de croisière coule de la même façon, de la cafetière dans les tasses, qu'au sol : les lois de l'écoulement du café sont les mêmes dans les deux référentiels « avion à sa vitesse de croisière » (vitesse mesure par rapport au sol) et « sol », en translation rectiligne uniforme l'un par rapport à l'autre à la vitesse de vol de l'avion.
Pour les physiciens du début du XXème siècle, le principe de relativité entre en contradiction avec l'existence de l'éther, pourtant indispensable, croit-on, à la théorie de la lumière de Maxwell. En effet, le principe de relativité énonce qu'il existe une classe de référentiels équivalents, et non pas un seul référentiel, dans lequel peuvent être formulés les lois de la nature de façon indifférente -- écartant par là même la possibilité que l'éther, défini comme le seul référentiel dans lequel les équations de Maxwell ont leur forme « canonique ».
En 1905, ce problème hante la physique depuis déjà plusieurs décennies, sous le nom d' « l'électrodynamique des corps en mouvement ». ( on se souvient que c'est le titre de l'article que publie Einstein ne septembre 1905). Dans cette appellation, « électrodynamique » indique que dans la théorie de Maxwell, la lumière est un champ électromagnétique, et l'expression « corps en mouvement », signale qu' un problème se pose dès lors que l'on essaie de décrire le champ produit par un corps émetteur qui se déplace dans l'éther : les équations de Maxwell, écrites dans le référentiel de l'éther, ne gardent pas la même forme mathématique lors du passage aux référentiels en translation uniforme par rapport à lui, qui pourtant devraient lui être équivalents.
On voit bien que dans cette affaire, c'est l'éther qui pose un problème et même qui le crée : si les équations de Maxwell ne devaient pas être écrites d'abord dans l'éther, seul référentiel où elles soient valables, les choses seraient beaucoup plus simples. L'éther embarrasse. Pourtant, l'argument de Maxwell selon lequel le champ ne se propage pas dans le vide et qu'il lui faut pour cela un support, un milieu matériel, empêche de s'en débarrasser. Le désir de le supprimer purement et simplement est exacerbé par le fait que de ce milieu imaginaire, rien n'a pu à ce jour être déterminé expérimentalement, ni sa densité, ni son élasticité, ni aucune propriété qui pourrait lui donner un peu de corps. Sa seule propriété physique, c'est d'être immobile...

***
J'ai décrit un peu longuement la situation dans laquelle se trouvait la physique, plus exactement, la théorie de la lumière, pour montrer qu'en 1905 Einstein s'attaque à un problème qui a déjà une histoire. Comme chacun a pu le constater en lisant la presse, cette année 2005 a été l'occasion de rouvrir un dossier récurrent, celui de la « véritable » paternité de la théorie de la relativité restreinte. Les faits sont les suivants, assez étonnants, il faut le dire. Einstein, alors en Suisse, envoie à Berlin, le 30 juin 1905, le manuscrit de son article « Electrodynamique des corps en mouvement » qui ne sera publié qu'en septembre. Trois semaines auparavant, le 5 juin, Poincaré a présenté à l'Académie des Sciences de Paris une communication dans laquelle il indique avoir résolu le problème des transformations qui laissent invariantes les équations de Maxwell, transformations dont il attribue à Lorentz le mérite, bien qu'il ait dû corriger les relations proposées par Lorentz. Poincaré rédige l'article correspondant en juin/juillet et l'envoie pour publication en juillet 1905 à la revue du Circolo matematico di Palermo ; il paraîtra en janvier 1906. Or, et c'est bien l'origine de toutes les controverses, la forme de ces transformations que Poincaré a baptisées « de Lorentz » mais qui sont de lui, est exactement celle que donne Einstein dans son article envoyé en juin, paru en septembre.
Un auteur, français et polytechnicien comme Poincaré, a imaginé une histoire assez plaisante visant à réhabiliter Poincaré, l'Ecole Polytechnique et la France, victimes une fois de plus de la vindicte allemande ; histoire selon laquelle Hilbert et Planck, deux grosses pointures de la science allemande, furieux évidemment d'avoir été doublés sur le poteau par leur vieux rival Poincaré, se seraient avisés de l'existence d'un jeune ambitieux, en mal de poste universitaire, rongeant son frein dans un bureau à Berne et lui auraient proposé de rédiger l'article qu'ils avaient « raté » et qu'ils ne pouvaient pas décemment publier sous leur nom, en échange d'un poste à l'université Berlin, rien de moins.


L'histoire est plaisante ...bien que déplaisante par l'exhibition de sentiments revanchards que l'on croyait ne plus jamais avoir à supporter. Elle ne tient pas debout - ne serait-ce que parce qu'il faut plus de 25 jours pour prendre connaissance à Berlin d'une communication orale faite à Paris, décider de la stratégie à adopter en réponse, retrouver le jeune ambitieux prêt à tout pour arriver, écrire à la main un article de 30 pages et le faire recopier par le jeune ambitieux.
Mais elle ne tient pas surtout parce qu'on a affaire à deux théories distinctes. Certes, les relations (que l'on appelle depuis « de Lorentz ») proposées par Poincaré ont exactement la même forme que celles qui se trouvent dans le mémoire d'Einstein. Le contraire aurait été étonnant, ou inquiétant. Mais peut-on conclure de l'identité de forme à l'identité de contenu ? Ont-elles la même signification dans les deux cas ? Absolument pas. Comme le montre d'ailleurs le fait suivant récemment signalé par le physicien Thibault Damour : Poincaré n'a pas « vu » que de ces relations découlait l'un des résultats les plus significatifs de la théorie einsteinienne de la relativité : la « dilatation des temps ».
Au delà des résultats, il est un point sur lequel Einstein et Poincaré diffèrent profondément ; c'est celui de l'existence de l'éther. Poincaré, qui fondamentalement souhaite pouvoir s'en passer se voit contraint, faute d'avoir les arguments suffisants pour cela, de s'en accommoder. Il garde l'éther comme référentiel dans lequel doivent être écrites les équations de Maxwell et s'arrange pour lui faire jouer un rôle muet. En effet, ayant mis en évidence la structure de groupe des transformations « de Lorentz », il établit que les équations de Maxwell gardent la même forme lors du passage d'un référentiel R à un autre équivalent R', en décomposant ce passage en deux : du référentiel R à celui de l'éther, et ensuite de l'éther à l'autre référentiel R'. Ainsi donc, la théorie de Poincaré est une théorie avec éther. Elle résout la question que se posait Poincaré : trouver les transformations qui laissent invariantes les équations de Maxwell et les qualifient ainsi comme « lois de la Nature », obéissant au principe de relativité. Mais elle ne résout pas la question de l'éther, loin de là
L'objectif d'Einstein est différent. C'est là qu'intervient l'article de mars, celui qu'il disait lui-même « révolutionnaire ». Ayant trouvé des arguments qui l'avaient convaincu de la possibilité pour la lumière d'être de nature granulaire et non ondulatoire (relevant du discontinu plutôt que du continu), Einstein avait une longueur d'avance sur ses contemporains dans l'exécution du meurtre annoncé de l'éther. Il avait de bons arguments pour penser que l'éther était superflu (rappelons que la nécessité de l'éther était liée à la propagation d'une onde). Aussi cherchait-il, avant tout, le moyen de rebâtir l'électrodynamique des corps en mouvement en se passant d'emblée de l'éther. C'est ce qu'il a fait en mettant l'accent non pas sur la propagation (que voudrait dire le mot « propagation » si la lumière était vraiment faite de quanta ? rien), mais sur l'idée de vitesse, rapport entre un intervalle d'espace et un intervalle de temps. De ce que la « vitesse » de la lumière était la même dans tous les référentiels, en contradiction avec l'addition algébrique des (vraies) vitesses, il a conclu que cette « vitesse » n'en était pas une ; il lui a donné un nouveau statut : celui de constante structurelle liant l'espace et le temps de la physique, grandeur invariante par définition, gardant la même valeur dans tous les référentiels. On sait comment il a alors transformé les idées fondamentales de temps et d'espace et bâti sa théorie.


Pour terminer, je voudrais insister sur la différence entre les perspectives adoptées par Einstein et par Poincaré (et Lorentz). Poincaré et Lorentz ont consacré trente ans de leur vie à bâtir une théorie électromagnétique libre, autant que possible, de contradiction. Ils y sont formellement arrivés. Einstein, avait trente ans de moins et, en 1905, il n'avait encore investi aucun effort dans cette direction. De plus, Einstein appartenait à l'aire culturelle allemande : il était enthousiaste des méthodes statistiques (il était devenu expert en la matière, grâce à son travail de thèse) ; c'est ce qui l'a mis sur la piste de la quantification de l'énergie lumineuse et lui a donné les arguments physiques qui lui permettaient d'affronter ceux, physiques également, qu'avait avancés Maxwell en faveur de l'éther ; c'est ce qui lui a permis de se placer sur le terrain même de Maxwell, celui de la physique. Einstein, contrairement à Lorentz et Poincaré, attachait de l'importance à l'éther ; bien qu'il ne se soit pas exprimé sur la question, on peut penser qu'au début de l'année 1905, Einstein ne considérait pas (comme le faisait Poincaré) que l'éther tomberait de lui-même, un jour (plus tard, une fois la théorie de Maxwell rendue invariante par changement de référentiel). Pour lui, il fallait commencer par se débarrasser de l'éther, c'est-à-dire s'en passer, de manière à le rendre superflu. A cet égard, d'avoir été formé à l'école statistique lui a rendu d'immenses services, comme j'ai tenté de le montrer en analysant l'article de mars.
On peut dire les choses autrement : Einstein, par sa formation, était enclin à chercher un passage du niveau microscopique au niveau macroscopique, du discontinu au continu ; Poincaré et Lorentz, eux, à force de critique des modèles mécanistes (dans lesquels on cherchait à rendre compte de la propagation de la lumière en termes de mouvements matériels) en étaient venus à se convaincre de la supériorité des théories du continu sur celles du discontinu. Significatif à cet égard est le titre donné par Poincaré à son article de Palerme: « La théorie de l'électron » ; Poincaré cherchait à construire le discontinu comme une accumulation spatiale d'énergie continue. L'ironie de l'affaire est que trente ans plus tard, Einstein lui aussi devait trouver un certain charme à cette idée, prêt à tout pour éviter la théorie quantique qu'il avait lancée mais qui avait pris un cours qui lui déplaisait.
COMMENTAIRES

AJOUTER UN COMMENTAIRE LIRE LES COMMENTAIRES
Georges 20/09/2014 04H04
Bonjour,
Merci à Françoise Balibar pour son exposé. J'ai appris en l'écoutant et lui en suit reconnaissant.
Je suis surpris dans sa conclusion (1:12:36), concernant le paradoxe EPR.
Je pensais (et suis sûr... :-) ) que l'expérience d'Aspect avait mis EN DEFAUT la position d'Einstein.
Elle explique que l'expérience d'Aspect a confirmé la position d'Einstein...!?
N'aurait-elle pas compris?
Merci pour votre réponse.
ffi 10/05/2012 03H41
Bof. Il suffit de comparer le mémoire de 50 pages de Poincaré de début juin 1905 et la publication d'Einstein du 30 juin 1905. Une démonstration complète et brillante de Poincaré, versus une vague métaphysique chez Einstein...

Mais il y a, il est vrai, une nuance de taille : Einstein éradique toute notion d'éther, alors que celui est central à la démonstration de Poincaré. Chez Poincaré, c'est le mouvement dans l'éther, qui, par effet d'advection, déforme le volume de la particule, contracte les longueurs, et explique donc l'échec de l'expérience de Michelson.

Poincaré admettait que l'hypothèse de l'éther était secondaire, mais précisait bien qu'il était préférable de la garder, sinon, cela "nuirait à la clarté de la théorie"...

L'inconvénient de supprimer l'éther, c'est que l'on supprime la cause elle-même, car, il n'y a pas de cause physique sans chose physique. Remplacer donc ainsi la cause physique en posant ses effets en tant qu'axiomes mathématiques fut une sacrée boulette et a fait perdre 1 siècle à la science.

Vivement que nos amis physiciens se réveillent de leur torpeur et cessent de confondre ainsi des spéculations métaphysiques avec la physique.

Cordialement

 

        VIDEO     canal U       LIEN

 
 
 
initiation musicale toulon  

LES TROUS NOIRS ET LA FORME DE L'ESPACE

  initiation musicale

 

 

 

 

 

 

LES TROUS NOIRS ET LA FORME DE L'ESPACE


La théorie de la relativité générale, les modèles de trous noirs et les solutions cosmologiques de type " big-bang " qui en découlent, décrivent des espace-temps courbés par la gravitation, sans toutefois trancher sur certaines questions fondamentales quant à la nature de l'espace. Quelle est sa structure géométrique à grande et à petite échelle ? Est-il continu ou discontinu, fini ou infini, possède-t-il des " trous " ou des " poignées ", contient-il un seul feuillet ou plusieurs, est-il " lisse " ou " chiffonné " ? Des approches récentes et encore spéculatives, comme la gravité quantique, les théories multidimensionnelles et la topologie cosmique, ouvrent des perspectives inédites sur ces questions. Je détaillerai deux aspects particuliers de cette recherche. Le premier sera consacré aux trous noirs. Astres dont l'attraction est si intense que rien ne peut s'en échapper, les trous noirs sont le triomphe ultime de la gravitation sur la matière et sur la lumière. Je décrirai les distorsions spatio-temporelles engendrées par les trous noirs et leurs propriétés exotiques : extraction d'énergie, évaporation quantique, singularités, trous blancs et trous de ver, destin de la matière qui s'y engouffre, sites astronomiques où l'on pense les avoir débusqués. Le second aspect décrira les recherches récentes en topologie cosmique, où l'espace " chiffonné ", fini mais de topologie multiconnexe, donne l'illusion d'un espace déplié plus vaste, peuplé d'un grand nombre de galaxies fantômes. L'univers observable acquiert ainsi la forme d'un " cristal " dont seule une maille correspond à l'espace réel, les autres mailles étant des répliques distordues emplies de sources fantômes.

Texte de la 187e conférence de l’Université de tous les savoirs donnée le 5 juillet 2000.
Les trous noirs et la forme de l'espace
par Jean-Pierre Luminet

Introduction
La question de la forme de l’espace me fascine depuis que, adolescent, j’ai ouvert une encyclopédie d’astronomie à la page traitant de la théorie de la relativité générale d’Einstein. Il y était écrit que, dans la conception relativiste, l’espace-temps a la forme d’un mollusque. Cette image m’avait beaucoup intrigué, et depuis lors, je n’ai eu de cesse d’élucider les mystères implicitement attachés à ce « mollusque universel ». Lorsqu’ils contemplent un beau ciel nocturne, la plupart des gens n’ont d’yeux que pour le spectacle des étoiles, c’est-à-dire le contenu de l’univers. Or, on peut aussi s’émerveiller devant l’invisible contenant : l’espace n’est-il qu’un réceptacle vide et passif qui accueille les corps, ou bien peut-on lui attribuer une forme, une structure, une architecture ? Est-il plat, courbe, rugueux, lisse, cabossé, plissé, etc. ?
L’espace a-t-il une forme ?
Il est sans doute difficile à la plupart d’entre vous d’attribuer une forme à quelque chose d’aussi impalpable et d’abstrait que l’espace. Au cours des siècles, maintes conceptions philosophiques ont tenté de « donner chair » à l’espace en le considérant, par exemple, comme une substance éthérée qui, non seulement contient les corps matériels, mais aussi les imprègne et partage avec eux certaines de ses propriétés structurelles. Toutefois, pour le physicien, les questions sur la forme de l’espace ne sont pertinentes qu’en utilisant le langage des mathématiques, plus spécifiquement celui de la géométrie.
Quel est l’espace géométrique qui est susceptible de représenter l’espace physique ?
Le problème est plus compliqué qu’il ne semble à première vue. Certes, l’espace « immédiat » qui nous environne est correctement décrit par la géométrie euclidienne ordinaire. Mais l’espace microscopique (à très petite échelle) et l’espace cosmologique (à très grande échelle) en diffèrent profondément. À la question de la forme de l’espace, la physique actuelle donne donc des réponses différentes, selon quatre « niveaux » dépendant de l’échelle à laquelle on examine la structure de l’espace. Les niveaux « intermédiaires » 1 & 2 sont assez bien compris, les niveaux « extrêmes » 0 & 3 font l’objet de spéculations théoriques originales.
Niveau 1 : Géométrie (pseudo-) euclidienne
Champ d’application : mécanique classique, relativité restreinte, électrodynamique quantique
À l’échelle « locale », disons entre 10-18 centimètre (longueur actuellement accessible à l’expérimentation) et 1011 mètres (de l’ordre de la distance Terre - Soleil), la géométrie de l’espace physique se décrit très bien par celle de l’espace euclidien ordinaire. « Très bien » signifie que cette structure mathématique sert de cadre naturel aux théories physiques qui, comme la mécanique classique, la relativité restreinte et l’électrodynamique quantique, permettent d’expliquer correctement la quasi-totalité des phénomènes naturels. L’espace y est à trois dimensions, sans courbure. Dans la théorie relativiste, il est couplé au temps au sein d’une géométrie pseudo-euclidienne quadridimensionnelle plate, dite « espace-temps de Minkowski ».
Niveau 2 : Géométrie différentielle en espace (pseudo-) riemannien
Champ d’application : relativité générale, cosmologie
À l’échelle astronomique (système solaire, étoiles, galaxies, univers dans son ensemble), l’interaction dominante qui « sculpte » l’espace physique est la gravité. Celle-ci est décrite par la relativité générale, qui fait apparaître une structure non-euclidienne de l’espace-temps. La géométrie différentielle des variétés riemanniennes permet précisément de décrire de tels espaces courbes. Il y a de nombreuses modélisations possibles. Par exemple, à grande échelle, la courbure est relativement « douce » et uniforme. Les cosmologistes travaillent donc dans le cadre d’espaces à courbure constante. Au voisinage d’objets très compacts, la courbure peut au contraire varier fortement d’un point à l’autre. La géométrie de Schwarzschild est un exemple de modélisation de l’espace-temps physique autour d’un trou noir sphérique.
Niveau 0 : Géométrie multidimensionnelle, géométrie non-commutative, etc.
Champ d’application : théories d’unification, supercordes, gravité quantique
La description de l’espace à l’échelle microscopique (entre 10-33 centimètre et 10-18 centimètre) est liée au plus grand enjeu de la physique actuelle : l’unification des interactions fondamentales. Celle-ci tente de marier deux points de vue extrêmement différents : celui de la mécanique quantique, décrivant les interactions en termes de champs, et celui de la relativité, décrivant la gravité en termes de courbure.
Aucune théorie de « gravité quantique » satisfaisante n’a vu le jour, mais plusieurs scénarios sont étudiés. Dans tous les cas, les conceptions géométriques usuelles sur l’espace et le temps sont bouleversées. Par exemple, la théorie des supercordes introduit des dimensions spatiales supplémentaires ; la géométrie non-commutative décrit un espace-temps granulaire et « flou » ; la géométrodynamique quantique conçoit l’espace-temps comme un océan bouillonnant d’énergie, agité de « vagues » (les fluctuations quantiques du vide) et ponctué « d’écume » (les univers-bulles).
Niveau 4 : Topologie, espaces « chiffonnés »
Champ d’application : structure globale de l’Univers, topologie cosmique
La question de la forme globale de l’espace (à une échelle supérieure à 1025 mètres) pose des problèmes géométriques spécifiques ne relevant plus seulement de la courbure, mais de la topologie de l’espace-temps. Celle-ci n’est incorporée ni dans la relativité générale, ni dans les approches unificatrices de la physique des hautes énergies. Pour reprendre l’image pittoresque du « mollusque universel », il ne s’agit plus de savoir s’il possède des bosses ou des creux, mais de savoir s’il s’agit d’un escargot, d’une limace ou d’un calmar.
Une nouvelle discipline est née il y a quelques années : la topologie cosmique, qui applique aux modèles cosmologiques relativistes les découvertes mathématiques effectuées dans le domaine de la classification topologique des espaces.
La suite de la conférence s’attachera exclusivement à la description du niveau 2 dans le contexte des trous noirs, et du niveau 4 dans le contexte des modèles d’univers chiffonnés.

Les trous noirs
Un vieux conte persan dit :
« Un jour, les papillons tiennent une vaste assemblée parce qu’ils sont tourmentés par le mystère de la flamme. Chacun propose son idée sur la question. Le vieux sage qui préside l’assemblée dit qu’il n’a rien entendu de satisfaisant, et que le mieux à faire est d’aller voir de près ce qu’est la flamme.
Un premier papillon volontaire s’envole au château voisin et aperçoit la flamme d’une bougie derrière une fenêtre. Il revient très excité et raconte ce qu’il a vu. Le sage dit qu’il ne leur apprend pas grand chose.
Un deuxième papillon franchit la fenêtre et touche la flamme, se brûlant l’extrémité des ailes. Il revient et raconte son aventure. Le sage dit qu’il ne leur apprend rien de plus.
Un troisième papillon va au château et se consume dans la flamme. Le sage, qui a vu la scène de loin, dit que seul le papillon mort connaît le secret de la flamme, et qu’il n’y a rien d’autre à dire. »
Cette parabole préfigure le mystère des trous noirs. Ces objets célestes capturent la matière et la lumière sans espoir de retour : si un astronaute hardi s’aventurait dans un trou noir, il ne pourrait jamais en ressortir pour relater ses découvertes.

Les trous noirs sont des astres invisibles
Le concept d’astre invisible a été imaginé par deux astronomes de la fin du XVIIIe siècle, John Michell (1783) et Pierre de Laplace (1796). Dans le cadre de la théorie de l’attraction universelle élaborée par Newton, ils s’étaient interrogés sur la possibilité qu’il puisse exister dans l’univers des astres si massifs que la vitesse de libération à leur surface puisse dépasser la vitesse de la lumière. La vitesse de libération est la vitesse minimale avec laquelle il faut lancer un objet pour qu’il puisse échapper définitivement à l’attraction gravitationnelle d’un astre. Si elle dépasse la vitesse de la lumière, l’astre est nécessairement invisible, puisque même les rayons lumineux resteraient prisonniers de son champ de gravité.
Michell et Laplace avaient donc décrit le prototype de ce qu’on appellera beaucoup plus tard (en 1968) un « trou noir », dans le cadre d’une autre théorie de la gravitation (la relativité générale). Ils avaient cependant calculé les bons « ordres de grandeur » caractérisant l’état de trou noir. Un astre ayant la densité moyenne de l’eau (1g/cm3) et une masse de dix millions de fois celle du Soleil serait invisible. Un tel corps est aujourd’hui nommé « trou noir supermassif ». Les astronomes soupçonnent leur existence au centre de pratiquement toutes les galaxies (bien qu’ils ne soient pas constitués d’eau !). Plus communs encore seraient les « trous noirs stellaires », dont la masse est de l’ordre de quelques masses solaires et le rayon critique (dit rayon de Schwarzschild) d’une dizaine de kilomètres seulement. Pour transformer le Soleil en trou noir, il faudrait le réduire à une boule de 3 kilomètres de rayon ; quant à la Terre, il faudrait la compacter en une bille de 1 cm !
Les trous noirs sont des objets relativistes
La théorie des trous noirs ne s’est véritablement développée qu’au XXe siècle dans le cadre de la relativité générale. Selon la conception einsteinienne, l’espace, le temps et la matière sont couplés en une structure géométrique non-euclidienne compliquée. En termes simples, la matière-énergie confère, localement du moins, une forme à l’espace-temps. Ce dernier peut être vu comme une nouvelle entité qui est à la fois « élastique », en ce sens que les corps massifs engendrent localement de la courbure, et « dynamique », c’est-à-dire que cette structure évolue au cours du temps, au gré des mouvements des corps massifs. Par exemple, tout corps massif engendre autour de lui, dans le tissu élastique de l’espace-temps, une courbure ; si le corps se déplace, la courbure se déplace avec lui et fait vibrer l’espace-temps sous formes d’ondulations appelées ondes gravitationnelles.

La courbure de l’espace-temps peut se visualiser par les trajectoires des rayons lumineux et des particules « libres ». Celles-ci épousent naturellement la forme incurvée de l’espace. Par exemple, si les planètes tournent autour du Soleil, ce n’est pas parce qu’elles sont soumises à une force d’attraction universelle, comme le voulait la physique newtonienne, mais parce qu’elles suivent la « pente naturelle » de l’espace-temps qui est courbé au voisinage du Soleil. En relativité, la gravité n’est pas une force, c’est une manifestation de la courbure de l’espace-temps. C’est donc elle qui sculpte la forme locale de l’univers.
Les équations d’Einstein indiquent comment le degré de courbure de l’espace-temps dépend de la concentration de matière (au sens large du terme, c’est-à-dire incluant toutes les formes d’énergie). Les trous noirs sont la conséquence logique de ce couplage entre matière et géométrie. Le trou noir rassemble tellement d’énergie dans un région confinée de l’univers qu’il creuse un véritable « puits » dans le tissu élastique de l’espace-temps. Toute particule, tout rayon lumineux pénétrant dans une zone critique définie par le bord (immatériel) du puits, sont irrémédiablement capturés.

Comment les trous noirs peuvent-ils se former ?
Les modèles d’évolution stellaire, développés tout au long du XXe siècle, conduisent à un schéma général de l’évolution des étoiles en fonction de leur masse. Le destin final d’un étoile est toujours l’effondrement gravitationnel de son cœur (conduisant à un « cadavre stellaire »), accompagné de l’expulsion de ses couches externes. Il y a trois types de cadavres stellaires possibles :
- La plupart des étoiles (90 %) finissent en « naines blanches », des corps de la taille de la Terre mais un million de fois plus denses, constituées essentiellement de carbone dégénéré. Ce sera le cas du Soleil.
- Les étoiles dix fois plus massives que le Soleil (9,9 %) explosent en supernova. Leur cœur se contracte en une boule de 15 km de rayon, une « étoile à neutrons » à la densité fabuleuse. Elles sont détectables sous la forme de pulsars, objets fortement magnétisés et en rotation rapide dont la luminosité radio varie périodiquement.
- Enfin, si l’étoile est initialement 30 fois plus massive que le Soleil, son noyau est condamné à s’effondrer sans limite pour former un trou noir. On sait en effet qu’une étoile à neutrons ne peut pas dépasser une masse critique d’environ 3 masses solaires. Les étoiles très massives sont extrêmement rares : une sur mille en moyenne. Comme notre galaxie abrite environ cent milliards d’étoiles, on peut s’attendre à ce qu’elle forme une dizaine de millions de trous noirs stellaires.
Quant aux trous noirs supermassifs, ils peuvent résulter, soit de l’effondrement gravitationnel d’un amas d’étoiles tout entier, soit de la croissance d’un trou noir « germe » de masse initialement modeste.
Comment détecter les trous noirs ?
Certains trous noirs peuvent être détectés indirectement s’ils ne sont pas isolés, et s’ils absorbent de la matière en quantité suffisante. Par exemple, un trou noir faisant partie d’un couple stellaire aspire l’enveloppe gazeuse de son étoile compagne. Avant de disparaître, le gaz est chauffé violemment, et il émet une luminosité caractéristique dans la gamme des rayonnements à haute énergie. Des télescopes à rayons X embarqués sur satellite recherchent de tels trous noirs stellaires dans les systèmes d’étoiles doubles à luminosité X fortement variable. Il existe dans notre seule galaxie une douzaine de tels « candidats » trous noirs.
L’observation astronomique nous indique aussi que les trous noirs supermassifs existent vraisemblablement au centre de nombreuses galaxies - dont la nôtre. Le modèle du « trou noir galactique » explique en particulier la luminosité extraordinaire qui est libérée par les galaxies dites « à noyau actif », dont les plus spectaculaires sont les quasars, objets intrinsèquement si lumineux qu’ils permettent de sonder les confins de l’espace.
En 1979, mon premier travail de recherche a consisté à reconstituer numériquement l’apparence d’un trou noir entouré d’un disque de gaz chaud. Les distorsions de l’espace-temps au voisinage du trou noir sont si grandes que les rayons lumineux épousent des trajectoires fortement incurvées permettant, par exemple, d’observer simultanément le dessus et le dessous du disque. J’ai ensuite étudié la façon dont une étoile qui frôle un trou noir géant est brisée par les forces de marée. L’étirement de l’espace est tel que, en quelques secondes, l’étoile est violemment aplatie sous la forme d’une « crêpe flambée ». Les débris de l’étoile peuvent ensuite alimenter une structure gazeuse autour du trou noir et libérer de l’énergie sur le long terme. Ce phénomène de crêpe stellaire, mis en évidence par les calculs numériques, n’a pas encore été observé, mais il fournit une explication plausible au mode d’alimentation des galaxies à noyau actif.
La physique externe des trous noirs
La théorie des trous noirs s’est essentiellement développée dans les années 1960-70. Le trou noir, comme tous les objets, tourne sur lui-même. On peut l’envisager comme un « maelström cosmique » qui entraîne l’espace-temps dans sa rotation. Comme dans un tourbillon marin, si un vaisseau spatial s’approche trop près, il commence par être irrésistiblement entraîné dans le sens de rotation et, s’il franchit une zone critique de non-retour, il tombe inéluctablement au fond du vortex.
Le temps est également distordu dans les parages du trou noir. Le temps « apparent », mesuré par toute horloge extérieure, se ralentit indéfiniment, tandis que le temps « propre », mesuré par une horloge en chute libre, n’égrène que quelques secondes avant d’être anéantie au fond du trou. Si un astronaute était filmé dans sa chute vers un trou noir, personne ne le verrait jamais atteindre la surface ; les images se figeraient à jamais à l’instant où l’astronaute semblerait atteindre la frontière du trou noir. Or, selon sa propre montre, l’astronaute serait bel et bien avalé par le trou en quelques instants.
Le théorème capital sur la physique des trous noirs se formule de façon pittoresque : « un trou noir n’a pas de poils. » Il signifie que, lorsque de la matière-énergie disparaît à l’intérieur d’un trou noir, toutes les propriétés de la matière telles que couleur, forme, constitution, etc., s’évanouissent, seules subsistent trois caractéristiques : la masse, le moment angulaire et la charge électrique. Le trou noir à l’équilibre est donc l’objet le plus « simple » de toute la physique, car il est entièrement déterminé par la donnée de ces trois paramètres. Du coup, toutes les solutions exactes de la théorie de la relativité générale décrivant la structure de l’espace-temps engendré par un trou noir sont connues et étudiées intensivement.
Par sa nature même, un trou noir est inéluctablement voué à grandir. Cependant, la théorie a connu un rebondissement intéressant au début des années 1980, lorsque Stephen Hawking a découvert que les trous noirs « microscopiques » (hypothétiquement formés lors du big-bang) se comporteraient à l’inverse des gros trous noirs. Régis par la physique quantique et non plus seulement par la physique gravitationnelle, ces micro-trous noirs ayant la taille d’une particule élémentaire mais la masse d’une montagne s’évaporeraient car ils seraient fondamentalement instables. Ce phénomène « d’évaporation quantique » suscite encore beaucoup d’interrogations. Aucun micro-trou noir n’a été détecté, mais leur étude théorique permet de tisser des liens entre la gravité et la physique quantique. Des modèles récents suggèrent que le résultat de l’évaporation d’un trou noir ne serait pas une singularité ponctuelle « nue », mais une corde – objet théorique déjà invoqué par des théories d’unification des interactions fondamentales.
L’intérieur des trous noirs
Le puits creusé par le trou noir dans le tissu élastique de l’espace-temps est-il « pincé » par un nœud de courbure infinie – auquel cas toute la matière qui tomberait dans le trou noir se tasserait indéfiniment dans une singularité ? Ou bien le fond du trou noir est-il « ouvert » vers d’autres régions de l’espace-temps par des sortes de tunnels ? Cette deuxième possibilité, apparemment extravagante, est suggérée par certaines solutions mathématiques de la relativité. Un trou de ver serait une structure topologique exotique ressemblant à une « poignée d’espace-temps » qui relierait deux régions de l’univers, dont l’une serait un trou noir et l’autre un « trou blanc ». Ces raccourcis d’espace-temps, qui permettraient de parcourir en quelques fractions de seconde des millions d’années lumière sans jamais dépasser la vitesse de la lumière, ont fasciné les physiciens tout autant que les écrivains de science-fiction. Des études plus détaillées montrent que de tels trous de ver ne peuvent pas se former dans l’effondrement gravitationnel d’une étoile : aussitôt constitués, ils seraient détruits et bouchés avant qu’aucune particule n’ait le temps de les traverser. Des modèles suggèrent que les trous de ver pourraient cependant exister à l’échelle microscopique. En fait, la structure la plus intime de l’espace-temps pourrait être constituée d’une mousse perpétuellement changeante de micro-trous noirs, micro-trous blancs et mini-trous de ver, traversés de façon fugace par des particules élémentaires pouvant éventuellement remonter le cours du temps !

La forme globale de l’univers
À l'échelle de la cosmologie, le « tissu élastique » de l’espace-temps doit être conçu comme chargé d’un grand nombre de billes - étoiles, galaxies, amas de galaxies - réparties de façon plus ou moins homogène et uniforme. La courbure engendrée par la distribution des corps est donc elle-même uniforme, c’est-à-dire constante dans l’espace. En outre, la distribution et le mouvement de la matière universelle confèrent à l’espace-temps une dynamique globale : l’univers est en expansion ou en contraction.
La cosmologie relativiste consiste à rechercher des solutions exactes de la relativité susceptibles de décrire la structure et l’évolution de l’univers à grande échelle. Les modèles à courbure spatiale constante ont été découverts par Alexandre Friedmann et Georges Lemaître dans les années 1920. Ces modèles se distinguent par leur courbure spatiale et par leur dynamique.
Dans la version la plus simple :
- Espace de courbure positive (type sphérique)
L’espace, de volume fini (bien que dans frontières), se dilate initialement à partir d’une singularité (le fameux « big-bang »), atteint un rayon maximal, puis se contracte pour s’achever dans un « big-crunch ». La durée de vie typique d’un tel modèle d’univers est une centaine de milliards d’années.
- Espace de courbure nulle (type euclidien) ou négative (type hyperbolique)
Dans les deux cas, l’expansion de l’univers se poursuit à jamais à partir d’un big-bang initial, le taux d’expansion se ralentissant toutefois au cours du temps.
La dynamique ci-dessus est complètement modifiée si un terme appelé « constante cosmologique » est ajouté aux équations relativistes. Ce terme a pour effet d’accélérer le taux d’expansion, de sorte que même un espace de type sphérique peut être « ouvert » (c’est-à-dire en expansion perpétuelle) s’il possède une constante cosmologique suffisamment grande. Des observations récentes suggèrent que l’espace cosmique est proche d’être euclidien (de sorte que l’alternative sphérique / hyperbolique n’est nullement tranchée !), mais qu’il est en expansion accélérée, ce qui tend à réhabiliter la constante cosmologique (sous une forme associée à l’énergie du vide).
Je ne développerai pas davantage la question, car elle figure au programme de la 186e conférence de l’Utls donnée par Marc Lachièze-Rey.
Quelle est la différence entre courbure et topologie ?
Avec la cosmologie relativiste, disposons-nous d’une description de la forme de l’espace à grande échelle ? On pourrait le croire à première vue, mais il n’en est rien. Même la question de la finitude ou de l’infinitude de l’espace (plus grossière que celle concernant sa forme) n’est pas clairement tranchée. En effet, si la géométrie sphérique n’implique que des espaces de volume fini (comme l’hypersphère), les géométries euclidienne et hyperbolique sont compatibles tout autant avec des espaces finis qu’avec des espaces infinis. Seule la topologie, cette branche de la géométrie qui traite de certaines formes invariantes des espaces, donne des informations supplémentaires sur la structure globale de l’espace - informations que la courbure (donc la relativité générale) ne saurait à elle seule fournir.
Pour s’assurer qu’un espace est localement euclidien (de courbure nulle), il suffit de vérifier que la somme des angles d’un triangle quelconque fait bien 180° - ou, ce qui revient au même, de vérifier le théorème de Pythagore. Si cette somme est supérieure à 180°, l’espace est localement sphérique (courbé positivement), et si cette somme est inférieure à 180°, l’espace est localement hyperbolique (courbé négativement).
Cependant, un espace euclidien n’est pas nécessairement aussi simple que ce que l’on pourrait croire. Par exemple, une surface euclidienne (à deux dimensions, donc) n’est pas nécessairement le plan. Il suffit de découper une bande dans le plan et d’en coller les extrémités pour obtenir un cylindre. Or, à la surface du cylindre, le théorème de Pythagore est tout autant vérifié que dans le plan d’origine. Le cylindre est donc une surface euclidienne de courbure strictement nulle, même si sa représentation dans l’espace (fictif) de visualisation présente une courbure « extrinsèque ». Bien qu’euclidien, le cylindre présente une différence fondamentale d’avec le plan : il est fini dans une direction. C’est ce type de propriété qui relève de la topologie, et non pas de la courbure. En découpant le plan et en le recollant selon certains points, nous n’avons pas changé sa forme locale (sa courbure) mais nous avons changé radicalement sa forme globale (sa topologie). Nous pouvons aller plus loin en découpant le cylindre en un tube de longueur finie, et en collant les deux extrémités circulaires. Nous obtenons un tore plat, c’est-à-dire une surface euclidienne sans courbure, mais fermée dans toutes les directions (de superficie finie). Une bactérie vivant à la surface d’un tore plat ne ferait pas la différence avec le plan ordinaire, à moins de se déplacer et de faire un tour complet du tore. À trois dimensions, il est possible de se livrer à ce même genre d’opérations. En partant d’un cube de l'espace euclidien ordinaire, et en identifiant deux à deux ses faces opposées, on crée un « hypertore », espace localement euclidien de volume fini.

Les espaces chiffonnés
Du point de vue topologique, le plan et l’espace euclidien ordinaire sont monoconnexes, le cylindre, le tore et l’hypertore sont multiconnexes. Dans un espace monoconnexe, deux points quelconques sont joints par une seule géodésique (l’équivalent d'une droite en espace courbe), tandis que dans un espace multiconnexe, une infinité de géodésiques joignent deux points. Cette propriété confère aux espaces multiconnexes un intérêt exceptionnel en cosmologie. En effet, les rayons lumineux suivent les géodésiques de l'espace-temps. Lorsqu’on observe une galaxie lointaine, nous avons coutume de croire que nous la voyons en un unique exemplaire, dans une direction donnée et à une distance donnée. Or, si l’espace cosmique est multiconnexe, il y a démultiplication des trajets des rayons lumineux, donnant des images multiples de la galaxie observée. Comme toute notre perception de l'espace provient de l’analyse des trajectoires des rayons lumineux, si nous vivions dans un espace multiconnexe nous serions plongés dans une vaste illusion d’optique nous faisant paraître l’univers plus vaste que ce qu’il n'est; des galaxies lointaines que nous croirions « originales » seraient en réalités des images multiples d’une seule galaxie, plus proche dans l'espace et dans le temps.

Figure : Un univers très simple à deux dimensions illustre comment un observateur situé dans la galaxie A (sombre) peut voir des images multiples de la galaxie B (claire). Ce modèle d’univers, appelé tore, est construit à partir d’un carré dont on a « recollé » les bords opposés : tout ce qui sort d’un côté réapparaît immédiatement sur le côté opposé, au point correspondant. La lumière de la galaxie B peut atteindre la galaxie A selon plusieurs trajets, de sorte que l’observateur dans la galaxie A voit les images de la galaxie B lui parvenir de plusieurs directions. Bien que l’espace du tore soit fini, un être qui y vit a l’illusion de voir un espace, sinon infini (en pratique, des horizons limitent la vue), du moins plus grand que ce qu’il n’est en réalité. Cet espace fictif a l’aspect d’un réseau construit à partir d’une cellule fondamentale, qui répète indéfiniment chacun des objets de la cellule.
Les modèles d’ univers chiffonné permettent de construire des solutions cosmologiques qui, quelle que soit leur courbure, peuvent être finies ou infinies, et décrites par des formes (topologies) d’une grande subtilité. Ces modèles peuvent parfaitement être utilisés pour décrire la forme de l’espace à très grande échelle. Un espace chiffonné est un espace multiconnexe de volume fini, de taille est plus petite que l’univers observé (dont le rayon apparent est d’environ 15 milliards d’années-lumière).
Les espaces chiffonnés créent un mirage topologique qui démultiplie les images des sources lumineuses. Certains mirages cosmologiques sont déjà bien connus des astronomes sous le nom de mirages gravitationnels. Dans ce cas, la courbure de l’espace au voisinage d'un corps massif situé sur la ligne de visée d’un objet plus lointain, démultiplie les trajets des rayons lumineux provenant de l'arrière-plan. Nous percevons donc des images fantômes regroupées dans la direction du corps intermédiaire appelé « lentille ». Ce type de mirage est dû à la courbure locale de l’espace autour de la lentille.
Dans le cas du mirage topologique, ce n’est pas un corps particulier qui déforme l’espace, c’est l’espace lui-même qui joue le rôle de la lentille. En conséquence, les images fantômes sont réparties dans toutes les directions de l'espace et toutes les tranches du passé. Ce mirage global nous permettrait de voir les objets non seulement sous toutes leurs orientations possibles, mais également à toutes les phases de leur évolution.

Tests observationnels de l'univers chiffonnés
Si l’espace est chiffonné, il l’est de façon subtile et à très grande échelle, sinon nous aurions déjà identifié des images fantômes de notre propre galaxie ou d'autres structures bien connues. Or, ce n’est pas le cas. Comment détecter la topologie de l’univers? Deux méthodes d’analyse statistique ont été développées récemment. L’une, la cristallographie cosmique, tente de repérer certaines répétitions dans la distribution des objets lointains. L’autre étudie la distribution des fluctuations de température du rayonnement fossile. Ce vestige refroidi du big-bang permettrait, si l’espace est chiffonné, de mettre en évidence des corrélations particulières prenant l’aspect de paires de cercles le long desquels les variations de température cosmique d’un point à l’autre seraient les mêmes.

Les projets expérimentaux de cristallographie cosmique et de détection de paires de cercles corrélés sont en cours. Pour l’instant, la profondeur et la résolution des observations ne sont pas suffisantes pour tirer des conclusions sur la topologie globale de l’espace. Mais les prochaines années ouvrent des perspectives fascinantes ; elles livreront à la fois des sondages profonds recensant un très grand nombre d’amas lointains de galaxies et de quasars, et des mesures à haute résolution angulaire du rayonnement fossile. Nous saurons peut-être alors attribuer une forme à l'espace.
Bibliographie
Jean-Pierre Luminet, Les trous noirs, Le Seuil / Points Sciences, 1992.
Jean-Pierre Luminet, L’univers chiffonné, Fayard, 2001.
COMMENTAIRES

AJOUTER UN COMMENTAIRE LIRE LES COMMENTAIRES
Alain MOCCHETTI 14/02/2018 00H09
QU'EST-CE QU’UN VORTEX ESPACE - TEMPS ET UN TROU DE VER ?
Un Vortex Espace – Temps ou Porte Spatio-Temporelle est un 4ème type de VORTEX qui permet de voyager à la fois dans l’Espace et dans le Temps :
- Voyager dans l’Espace en reliant un Univers Multiple à un autre,
- Voyager dans l’Espace en reliant un Univers Parallèle à un autre,
- Voyager dans l’Espace en reliant 2 points au sein du même Univers Multiple ou du même Univers Parallèle.
Il permet de voyager également dans le Temps :
- Du Futur vers le Passé,
- Du Passé vers le Futur.
Certains Vortex qui permettent de voyager dans l’Espace Temps sont appelés TROU DE VER.
Définition d’un Trou de Ver :
Un trou de ver est, en physique, un objet hypothétique qui relierait deux feuillets distincts ou deux régions distinctes de l'espace-temps et se manifesterait, d'un côté, comme un trou noir et, de l'autre côté, comme un trou blanc. Un trou de ver formerait un raccourci à travers l'espace-temps. Pour le représenter plus simplement, on peut se représenter l'espace-temps non en quatre dimensions mais en deux dimensions, à la manière d'un tapis ou d'une feuille de papier. La surface de cette feuille serait pliée sur elle-même dans un espace à trois dimensions. L'utilisation du raccourci « trou de ver » permettrait un voyage du point A directement au point B en un temps considérablement réduit par rapport au temps qu'il faudrait pour parcourir la distance séparant ces deux points de manière linéaire, à la surface de la feuille. Visuellement, il faut s'imaginer voyager non pas à la surface de la feuille de papier, mais à travers le trou de ver, la feuille étant repliée sur elle-même permet au point A de toucher directement le point B. La rencontre des deux points serait le trou de ver. L'utilisation d'un trou de ver permettrait le voyage d'un point de l'espace à un autre (déplacement dans l'espace), le voyage d'un point à l'autre du temps (déplacement dans le temps) et le voyage d'un point de l'espace-temps à un autre (déplacement à travers l'espace et en même temps à travers le temps). Les trous de ver sont des concepts purement théoriques : l'existence et la formation physique de tels objets dans l'Univers n'ont pas été vérifiées. Il ne faut pas les confondre avec les trous noirs, dont l'existence tend à être confirmée par de nombreuses observations, dont le champ gravitationnel est si intense qu’il empêche toute forme de matière de s'en échapper.
Alain Mocchetti
Ingénieur en Construction Mécanique & en Automatismes
Diplômé Bac + 5 Universitaire (1985)
UFR Sciences de Metz
alainmocchetti@sfr.fr
alainmocchetti@gmail.com
@AlainMocchetti

 

 VIDEO       CANAL  U         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 ] Précédente - Suivante
 
 
 
Google