|
|
|
|
 |
|
Caractéristiques des diverses énergies |
|
|
|
|
|
Caractéristiques des diverses énergies
Puissance, "perte" en chaleur, capacité de renouvellement… Ces caractéristiques déterminent l'usage que nous faisons des différentes énergies.
Publié le 1 juillet 2012
*
Bien que l’énergie soit une seule et même grandeur physique, ses diverses formes présentent des caractéristiques très différentes. Dans la pratique, le choix de tel ou tel type d’énergie dépendra donc du but poursuivi. Pour un objectif donné, par exemple produire de l’énergie électrique, il est essentiel, selon les circonstances, de peser le pour et le contre de chaque solution envisageable, et les critères de choix sont multiples.
ÉNERGIES DILUÉES OU CONCENTRÉES
De même qu’un billet de 50 euros permet d’acheter la même quantité de marchandises que 50 pièces de 1 euro, certaines formes d’énergie sont concentrées sous un volume beaucoup plus faible que d’autres. On peut de ce point de vue distinguer trois catégories, qui correspondent aux trois types de forces identifiées précédemment.
L’énergie de gravitation
L’énergie de gravitation n’est appréciable que si des masses considérables sont en jeu. On a vu que 1 kg d’eau tombant de 100 m ne fournit que 981 J (voir chapitre “Les diverses formes d'énergie”, paragraphe “Énergie de gravitation”) et que 1 kWh vaut 3 600 000 J (voir chapitre “Qu'est-ce que l'Énergie ?”, paragraphe “La puissance”). Pour libérer seulement 1 kWh, il faut faire chuter (3 600 000 J/981 J/kg) soit 3,67 t d’eau de 100 m. Les centrales hydroélectriques sont donc peu efficaces de ce point de vue. Les énergies mécaniques apparaissant dans notre vie courante ont aussi des ordres de grandeur très faibles. L’énergie cinétique d’une voiture pesant 1 tonne roulant à 100 km/h n’est que de 0,1 kWh.
La nature ne nous permet de convertir qu’une fraction de chaleur en une autre forme d’énergie.
Énergies calorifique, électrique, radiative et chimique
Dans la catégorie intermédiaire figurent les énergies calorifique, électrique, radiative et chimique, qui, pour les usages courants, se mesurent en nombres de l’ordre du kWh par kg de matière. Il faut fournir 0,1 kWh pour faire fondre 1 kg de glace, 0,7 kWh pour vaporiser 1 kg d’eau à 100 °C. Les appareils électroménagers consomment une puissance électrique comprise entre 0,1 et 5 kW. La combustion de 1 kg de pétrole ou de gaz fournit environ 12 kWh. Un homme élabore de l’énergie biochimique, provenant des aliments digérés et de l’air respiré. Il l’utilise pour maintenir sa température à 37 °C et exercer ses activités ; la puissance correspondante est de 100 W au repos, de 500 W en pleine activité physique.
On peut prendre conscience de l’écart qui sépare ces deux premières catégories d’énergie en notant que, si l’énergie mécanique d’un œuf tombant du sommet de la tour Eiffel était entièrement transformée en chaleur et utilisée pour échauffer l’œuf, sa température n’augmenterait que de 0,7 °C.
La catégorie intermédiaire des énergies diluées ou concentrées regroupe les énergies calorifique, électrique, radiative et chimique. Exemple : la combustion de pétrole ou de gaz. © PhotoDisc
Le calcul de l'énergie totale
Dans le Soleil, 1 kg d’hydrogène produit 180 millions de kWh. Pour des énergies aussi considérables, on vérifie la célèbre relation d’Einstein E = mc2, qui exprime que l’énergie totale d’un corps est proportionnelle à sa masse, nouvelle propriété d’équivalence ; mais le coefficient est énorme, puisque la vitesse c de la lumière vaut 300 000 km/s. De la sorte, une masse de seulement 1 mg équivaut à 25 000 kWh ; dans une centrale nucléaire, la transformation de 1 kg d’uranium naturel en d’autres éléments diminue l’énergie nucléaire du combustible de 100 000 kWh, et donc sa masse de 4 mg.
Les énergies renouvelables sont celles qui nous parviennent directement ou indirectement, du Soleil, du vent…
L’énergie nucléaire
L’énergie nucléaire est de loin une forme d’énergie beaucoup plus concentrée, puisque 1 kg d’uranium naturel fournit une quantité de chaleur de 100 000 kWh dans une centrale électrique courante, alors que 1 kg de charbon fournit en brûlant 8 kWh. C’est pourquoi on ne manipule que d’assez faibles masses de combustible nucléaire pour la production d’électricité : une centrale électronucléaire d’une puissance de 1 000 MW électriques (109 W) consomme 27 tonnes d’uranium enrichi par an, le quart de son chargement, alors qu’une centrale thermique de même puissance consomme 1 500 000 tonnes de pétrole par an. En fait, on ne sait extraire industriellement qu’une assez faible part de l’énergie nucléaire emmagasinée dans la matière. Dans le Soleil, 1 kg d’hydrogène produit, par réactions nucléaires le transformant en hélium, 180 millions de kWh.
LA DÉGRADATION
L’expérience montre qu’un système physique livré à lui-même tend à devenir spontanément de plus en plus désordonné. Parmi les diverses formes de l’énergie, la chaleur correspond à des mouvements désordonnés des molécules. Au contraire, les autres formes d’énergie, que l’on peut qualifier de “nobles”, sont ordonnées à l’échelle microscopique. Elles ont donc tendance à se changer en chaleur. Ce phénomène est appelé la dissipation, et l’on dit que la chaleur est une forme dégradée de l’énergie.
Il est facile de produire de la chaleur à partir d’une quantité équivalente d’énergie noble, par exemple dans des fours et chaudières, électriques ou à combustion, ou des capteurs solaires pour chauffe-eau. Mais les transformations inverses sont impossibles. Si l’on dispose d’une certaine quantité de chaleur, on ne peut pas la convertir intégralement en énergie mécanique, électrique ou chimique à l’aide d’un appareil qui fonctionnerait en cycle fermé, en revenant périodiquement à son état initial. Cette “interdiction” constitue l’une des grandes lois de la physique, confirmée par d’innombrables expériences : la nature ne nous autorise à convertir en une autre forme d’énergie qu’une fraction de la chaleur disponible, et elle impose à cette fraction de ne pas dépasser une certaine valeur maximale. C’est ce qui limite le rendement des turbines à vapeur dans les centrales électriques, des moteurs de voiture et d’avion, et de tous les engins délivrant de l’énergie mécanique à partir de l’énergie calorifique d’un gaz chaud.
La chaleur apparaît souvent comme une “perte” lorsqu’on manie les autres formes d’énergie (sauf, bien entendu, si l’on a en vue le chauffage domestique ou industriel). Afin d’exploiter l’énergie nucléaire ou l’énergie chimique dans une centrale électrique ou une automobile, on commence par produire de la chaleur par réaction nucléaire ou chimique ; seule une partie de cette chaleur peut ensuite être reconvertie en énergie électrique ou mécanique. La situation la plus favorable est celle de la conversion directe d’énergie mécanique en énergie électrique, et vice versa. Mais même dans ce cas, il est difficile en pratique d’éviter de détourner une part de ces énergies nobles vers de la chaleur. Si l’arbre d’un moteur entraîne celui d’un alternateur, le premier transforme de l’énergie électrique en énergie mécanique, et c’est l’alternateur qui reconvertit celle-ci en énergie électrique. Mais on récupère au total moins d’énergie électrique qu’on n’en a fourni ; la différence consiste en un dégagement de chaleur par effet joule, dans les bobinages ou par frottement, dans les paliers, impossible à éliminer totalement.
Cette équivalence entre les énergies est comparable à celle qui existe entre des monnaies convertibles, 1 dollar valant par exemple 0,98 euro. La dissipation en chaleur joue alors le rôle des frais bancaires qui nous empêchent de recouvrer le montant initial si nous changeons des euros en dollars, puis ceux-ci à nouveau en euros. La valeur comme l’énergie sont bien conservées au total, mais pas pour nous.
LE STOCKAGE
L’énergie électrique peut être emmagasinée dans des accumulateurs, sous forme d’énergie chimique. Mais la décharge d’un accumulateur fournit moins d’énergie électrique que sa charge, car les réactions électrochimiques s’accompagnent d’une assez forte dégradation en chaleur. De plus, les accumulateurs sont coûteux et lourds, puisqu’ils n’emmagasinent que 0,1 kWh par kg, ce qui est, avec le prix, la principale entrave au développement de la voiture électrique.
Nos besoins en puissance électrique varient avec l’heure, en croissant par exemple rapidement le soir ; et les centrales nucléaires ont du mal à suivre ces changements. Étant donné la faiblesse des pertes de chaleur dans les échanges électromécaniques, on a imaginé d’utiliser les barrages non seulement comme sources d’énergie hydroélectrique, mais aussi comme réservoirs d’énergie. En heures creuses, l’eau est pompée du bas du barrage vers la retenue par emploi d’énergie électronucléaire, et en heures de pointe, cette eau redescend, actionne les turbines de l’usine et l’on récupère de l’électricité. Puisque cette forme de stockage passe par de l’énergie mécanique, elle nécessite de brasser de fortes masses d’eau, plusieurs tonnes par kWh emmagasiné.
Les carburants, chimiques ou nucléaires, emmagasinent efficacement de l’énergie. Mais nous ne savons, en pareil cas, récupérer celle-ci que sous forme de chaleur.
LE TRANSPORT DE L'ÉNERGIE
La relative facilité de stockage et aussi de transport sur de grandes distances du charbon, du pétrole et du gaz a été l’un des facteurs primordiaux du développement de l’industrie depuis deux siècles. L’essor de l’automobile repose aussi sur la possibilité d’emporter avec soi assez de carburant pour parcourir plusieurs centaines de kilomètres. Mais l’électricité est la seule forme d’énergie susceptible d’être à la fois transformée en quasi-totalité en n’importe laquelle des autres, et transportée au loin en grande quantité à un coût relativement faible. Les pertes de chaleur dans les lignes à haute tension et les transformateurs atteignent cependant 8%.
LES RÉSERVES
On distingue les énergies fossiles des énergies renouvelables. Les premières reposent sur l’exploitation de minéraux et combustibles formés durant l’histoire de la Terre et n’existant qu’en quantités limitées. En tenant compte de l’évolution des consommations, et de l’espoir de découvrir de nouveaux gisements, on peut estimer les réserves mondiales à quelques dizaines d’années pour le pétrole, à une centaine d’années pour le gaz ou l’uranium, à quelques siècles pour le charbon. Le développement de techniques comme celles des surgénérateurs suffirait cependant à multiplier nos réserves en énergie nucléaire par un facteur supérieur à 100.
Les énergies renouvelables
Les énergies renouvelables sont celles qui nous parviennent directement ou indirectement du Soleil, qui nous envoie en permanence son rayonnement. Il s’agit des énergies solaire, hydraulique, éolienne (celle du vent), mais aussi de l’énergie chimique qui s’accumule dans les végétaux utilisables comme combustibles (bois, déchets, alcool). La puissance totale que l’on peut tirer de ces énergies renouvelables est cependant limitée ; par exemple, il ne faudrait pas brûler les forêts à un rythme plus rapide que celui de leur croissance. Bien qu’elles constituent un appoint essentiel, les énergies renouvelables ne sauraient se substituer qu’en faible proportion aux énergies fossiles.
LES NUISANCES
La manipulation de toutes les formes d’énergie produit sur notre environnement des effets plus ou moins néfastes, qu’il importe de savoir apprécier cas par cas. Certains résidus de combustion du charbon, du pétrole, de l’essence, ou même du gaz s’il brûle mal, sont nocifs pour l’homme. Le principal gaz dégagé, le dioxyde de carbone, s’accumule dans l’atmosphère, ce qui risque d’influer sur notre climat, en accroissant l’effet de serre. Les réactions nucléaires génèrent des déchets radioactifs, qu’il est essentiel de traiter ou de réduire surtout lorsqu’ils ont une longue durée de vie. Les centrales hydroélectriques noient des vallées. Les éoliennes sont bruyantes, et n’assurent pas une production continue ; de plus, elles occupent beaucoup d’espace pour d’assez faibles puissances. Les photopiles solaires ont le même défaut et sont très chères, de sorte que la transformation d’énergie solaire en électricité n’est adaptée qu’à l’alimentation d’habitations isolées ou au fonctionnement de petits appareils portables comme des calculettes ; de plus, la fabrication des photopiles est très coûteuse en énergie.
La pollution thermique
La dégradation de l’énergie entraîne une conséquence commune à toutes les énergies non renouvelables, la pollution thermique. La majeure partie des énergies fossiles que nous utilisons se change en définitive en chaleur. Nous avons vu, par exemple, que le bilan global du fonctionnement d’une voiture consiste en une transformation de l’énergie chimique de l’essence en chaleur cédée à l’environnement. Même si la pollution thermique est trop faible pour influencer le climat, elle peut avoir des effets locaux : une centrale thermique ou nucléaire refroidie par l’eau d’une rivière augmente de façon appréciable la température de cette eau en aval et peut ainsi modifier son équilibre écologique. D’importantes économies pourraient être réalisées en récupérant cette chaleur perdue. La moitié de l’énergie que nous utilisons est en effet destinée au chauffage domestique ou industriel, réalisé à l’aide de charbon, de gaz, de fioul ou d’électricité. Ce type de consommations pourrait être réduit par un meilleur emploi de la chaleur issue des centrales. En fait, la consommation moyenne d’énergie par habitant reflète non seulement un niveau de vie, mais aussi un niveau de gaspillage. Cet exemple illustre un point essentiel : la multiplicité des sources d’énergie répond à la diversité des usages, et une approche globale des problèmes énergétiques est indispensable.
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
Les 4 interactions fondamentales |
|
|
|
|
|
Les 4 interactions fondamentales
Publié le 19 juillet 2018
Quatre interactions fondamentales régissent l’Univers : l’interaction électromagnétique, l’interaction faible, l’interaction nucléaire forte et l’interaction gravitationnelle. Les interactions électromagnétique, forte et faible sont décrites par le modèle standard de la physique des particules, qui est en cohérence avec la physique quantique, tandis que l’interaction gravitationnelle est actuellement décrite par la théorie de la relativité générale. Quelles sont les propriétés de chacune de ces interactions ? Quel est leur impact sur notre quotidien ? Quels sont les enjeux de la recherche sur les interactions fondamentales ?
L’INTERACTION ÉLECTROMAGNÉTIQUE (FORCE ÉLECTROMAGNÉTIQUE)
L’interaction électromagnétique régit tous les phénomènes électriques et magnétiques. Elle peut être attractive ou répulsive : par exemple, deux pôles d’aimants de même signe (« nord » ou « sud ») vont se repousser alors que deux pôles d’aimants de signe opposé vont s’attirer.
Cette interaction est liée à l’existence de charges électriques et est notamment responsable de la cohésion des atomes en liant les électrons (charge électrique négative) attirés par le noyau de l’atome (charge électrique positive).
Le photon est la particule élémentaire associée à l’interaction électromagnétique.
Il est de charge électrique nulle et sans masse, ce qui fait que cette interaction a une portée infinie.
J.C. Maxwell écrit, vers 1864, la théorie de l’électromagnétisme qui explique l’existence d’ondes électromagnétiques (ondes radio, infra-rouge, lumière, ultra-violet, rayons X et gamma). Leur importance n’est plus à démontrer.
Dans la seconde moitié du XXe siècle, cette théorie a été reformulée grâce notamment aux travaux du physicien Feynman sous la forme de l’électrodynamique quantique pour y introduire les concepts quantiques de façon cohérente et qui décrit l’interaction comme un échange de photons.
L’INTERACTION FAIBLE (FORCE FAIBLE)
L’interaction faible est la seule qui agit sur toutes les particules, excepté sur les bosons. Elle est responsable de la radioactivité Bêta, elle est donc à l’origine de la désintégration de certains noyaux radioactifs.
Le rayonnement Bêta est un rayonnement émis par certains noyaux radioactifs qui se désintègrent par l'interaction faible. Le rayonnement β+ (β-) est constitué de positons (électrons) et se manifeste lorsqu’un proton (neutron) se transforme en neutron (proton). Un neutrino (antineutrino) électronique est également émis. Ce rayonnement est peu pénétrant : un écran de quelques mètres d'air ou une simple feuille d'aluminium suffisent pour l’arrêter.
Les particules élémentaires associées à l’interaction faible sont le boson neutre (le Z0) et les deux bosons chargés (les W+ et W−). Ils ont tous une masse non nulle (plus de 80 fois plus massifs qu’un proton), ce qui fait que l’interaction faible agit à courte portée (portée subatomique de l’ordre de 10-17 m).
La datation au carbone 14 est possible grâce à l’interaction faible. Le carbone 14 est un isotope radioactif du carbone qui se transforme en azote 14 par désintégration Bêta moins. Sa période radioactive, temps au bout duquel la moitié de ses atomes s’est désintégrée, est de 5 730 ans.
La technique du carbone 14 permet de dater des objets de quelques centaines d’années à 50 000 ans environ.
LE NEUTRINO
Le neutrino, particule élémentaire du modèle standard, n’est sensible qu’à l’interaction faible.
Le neutrino est un lepton du modèle standard de la physique pouvant prendre trois formes (ou saveurs) : le neutrino électronique, muonique et tauique. Les neutrinos n'ont pas de charge électrique et ont une masse très faible dont on connaît seulement une borne supérieure. Ils se transforment périodiquement les uns en les autres selon un processus appelé "oscillation des neutrinos". N'étant sensibles qu'à l'interaction faible, les neutrinos n'interagissent que très peu avec la matière si bien que pour absorber 50 % d'un flux de neutrinos, il faudrait lui opposer un mur de plomb d'une année-lumière d'épaisseur.
L’INTERACTION NUCLÉAIRE FORTE OU INTERACTION FORTE (FORCE FORTE)
L’interaction forte permet la cohésion du noyau de l’atome. Elle agit à courte portée au sein du proton et du neutron. Elle confine les quarks, particules élémentaires qui composent les protons et neutrons, en couples "quark−antiquark" (mésons), ou dans des triplets de quarks (un ou deux autres (anti) quarks) (baryons). Cette interaction se fait par l'échange de bosons appelés "gluons".
Le gluon est la particule élémentaire liée à l’interaction forte. La charge associée à cette interaction est la "charge de couleur". Lors de l'échange d'un gluon entre deux quarks, ils intervertissent leurs couleurs. L’interaction entre deux quarks est attractive et d’autant plus intense que ceux-ci sont distants l’un de l’autre, et est quasi nulle à très courte distance.
La réaction primordiale de fusion de deux protons en deutéron (un isotope naturel de l’hydrogène dont le noyau contient un proton et un neutron) est un processus dû à l’interaction faible dont le taux gouverne la lente combustion des étoiles. C’est ensuite l’interaction forte qui est à l’œuvre dans les chaînes de réactions nucléaires qui suivent et qui produisent d’autres noyaux.
Cette interaction est notamment responsable des réactions nucléaires qui ont lieu au sein du Soleil.
Les quarks portent une charge de couleur qui est à l’interaction forte ce que la charge électrique est pour la force électromagnétique. Un quark peut avoir trois couleurs, appelées par convention rouge, bleu et vert. Un antiquark a l’une des « anticouleurs » correspondantes : antirouge, antibleu et antivert.
Les quarks forment des particules composites « blanches », c’est-à-dire sans charge de couleur. Il y a deux manières de former ces hadrons : soit en combinant un quark et un antiquark dont la couleur et l’anticouleur s’annulent (par exemple rouge et antirouge) ; on parle alors de « méson ». Soit en associant trois quarks porteurs chacun d’une couleur différente ; de telles particules sont appelées « baryons » – par exemple le proton et le neutron.
L'INTERACTION GRAVITATIONNELLE (FORCE GRAVITATIONNELLE)
Dans la vision de la loi de la gravitation universelle de Newton, l’interaction gravitationnelle est celle qui agit entre des corps massifs. La force est attractive. La pesanteur et les mouvements des astres sont dus à la gravitation.
Dans le cadre de la relativité générale, la gravitation n’est pas une force mais une manifestation de la courbure de l’espace-temps. La gravitation ne fait pas partie du modèle standard, elle est décrite par la relativité générale. Elle se définit par la déformation de l’espace-temps.
La gravitation est la plus faible des quatre interactions fondamentales. Elle s'exerce à distance et de façon attractive entre les différentes masses. Sa portée est infinie.
La première théorie la décrivant efficacement est celle de Newton en 1687. Pesanteur, mouvements planétaires, structure des galaxies sont expliqués par la gravitation. En 1915, elle est remplacée par la théorie de la relativité générale d’Einstein qui sert de cadre à la description de l’Univers entier et où les masses déforment l’espace-temps au lieu d’y exercer des forces à distance.
A ce jour, on ne sait pas décrire l’interaction gravitationnelle par la mécanique quantique, et on ne lui connaît aucun boson médiateur.
Au niveau théorique, la gravitation pose problème car on ne sait pas la décrire à l’aide du formalisme de la « théorie quantique des champs », utilisé avec succès pour les trois autres interactions. L’hypothétique graviton serait la particule médiatrice de la gravitation dans une description quantique de cette interaction.
PORTÉE DE L'INTERACTION ENTRE DEUX CORPS
La masse du boson vecteur (ou médiateur) va définir la portée de l’interaction. Imaginez deux particules en interaction comme deux personnes se lançant une balle, représentant le boson vecteur : plus la balle est légère, plus ils peuvent la lancer loin. Par analogie, plus le boson vecteur est léger, plus la portée de l’interaction est grande.
Type Particules médiatrices (bosons vecteurs) Domine dans :
Force forte Gluons Noyau atomique
Force électromagnétique Photon Électrons entourant le noyau
Force faible Boson Z0, W+, W- Désintégration radioactive bêta
Gravitation Graviton ? (pas encore observé) Astres
LA THÉORIE DU TOUT : VERS L'UNIFICATION DES INTERACTIONS FONDAMENTALES ?
L’objectif des recherches est de trouver une théorie qui expliquerait simultanément les quatre interactions fondamentales.
L’unification des quatre interactions fondamentales fait partie des axes de recherche principaux de la physique des particules. Une première étape a été franchie il y a une trentaine d’années avec l’unification de l’interaction faible et de la force électromagnétique dans un même cadre : l’interaction électrofaible. Celle-ci se manifeste à haute énergie – environ 100 GeV. La suite logique de ce processus est d’y ajouter l’interaction forte. Mais, si convergence il y a, elle ne devrait se manifester qu’à des échelles d’énergie encore bien plus élevées (1015 ou 1016 GeV), totalement hors de portée des expériences actuelles. L’étape ultime, l’ajout de la gravité à ce formalisme, est encore plus éloignée et se heurte à des problèmes mathématiques non résolus pour le moment.
La théorie des cordes et la théorie de la gravitation quantique à boucles sont les deux cadres théoriques les plus étudiés aujourd’hui.
Les théories de dimensions supplémentaires, dont la théorie des cordes, ont été initialement proposées pour résoudre le problème de l’extrême faiblesse de la gravité. L’une des réponses serait que seule une petite fraction de la force gravitationnelle n’est perceptible, le reste agissant dans une ou plusieurs autres dimensions. Ces dimensions, imperceptibles, seraient courbées et non plates comme les quatre connues de l’espace et du temps.
Les cordes seraient des petits brins d’énergie en vibration qui seraient reliées dans plusieurs « branes » (des cordes qui se seraient étirées et transformées en grandes surfaces). Les branes seraient comme des barrières entre plusieurs dimensions, jusqu’à 10, mais ces dimensions supplémentaires nous sont invisibles.
Toute la physique fondamentale serait unifiée, c’est-à-dire la mécanique quantique avec la relativité générale.
La gravité quantique à boucles a pour but de quantifier la gravitation. Elle a notamment pour conséquences que le temps et l’espace ne sont plus continus, mais deviennent eux-mêmes quantifiés (il existe des intervalles de temps et d’espace indivisibles). La gravité quantique à boucles cherche à combiner la relativité générale et la mécanique quantique directement, sans rien y ajouter.
Cependant, à ce jour, aucune théorie unique ne peut expliquer de façon cohérente toutes les interactions.
DOCUMENT cea LIEN |
|
|
|
|
 |
|
L'IMPACT DU CLIMAT SUR LE SECTEUR DE L'ÉNERGIE |
|
|
|
|
|
L’impact du climat sur le secteur de l’énergie
Le secteur de l’énergie peut être impacté par le climat. Bien maîtriser les données climatiques permet d’estimer les ressources en énergies renouvelables et gérer les conséquences liées à la variabilité météorologique (assurer l’équilibre offre-demande, planifier les opérations de maintenance, …). Ces données permettent également d’anticiper les risques liés à des extrêmes météorologiques. La dépendance du secteur de l’énergie au climat risque d’augmenter dans le contexte actuel de réchauffement climatique.
ESTIMER LES RESSOURCES EN ÉNERGIES RENOUVELABLES
La transition énergétique prévoit une augmentation des énergies renouvelables, peu émettrices de CO2, mais leur production dépend fortement de la météo (sur le court terme) et du climat (sur le long terme).
Mesurer et prédire les paramètres climatiques tels que la température, le vent, les précipitations est essentiel pour la gestion des ressources en énergie renouvelables.
L'énergie éolienne
Le vent varie fortement dans l’espace et dans le temps. Avant d’investir dans l’installation d’un parc éolien, les producteurs ont besoin de connaître son rendement moyen et sa variabilité selon les jours ou les saisons.
Lorsque l’installation est opérationnelle, les prévisions de cette vitesse permettent d’anticiper la production.
L'énergie solaire
Le rendement des panneaux photovoltaïques et thermiques dépend principalement du rayonnement solaire qui atteint le sol. Pour obtenir cette valeur, il faut estimer l’atténuation du rayonnement incident par la couverture nuageuse et par les aérosols (petites particules fines en suspension dans l’atmosphère). Evaluer le potentiel solaire nécessite une bonne connaissance de la circulation atmosphérique, de l’humidité de l’air et des particules présentes dans l’atmosphère.
Par ailleurs, la température constitue un autre paramètre climatique à prendre en compte car le rendement des cellules photovoltaïques diminue avec la température.
L’énergie hydraulique
Pour déterminer le potentiel énergétique d’un barrage hydroélectrique, il faut connaître la climatologie des précipitations et de l’évaporation à l’échelle du bassin versant et de la rivière car ces deux paramètres climatiques modulent le débit de l’eau et le stock du réservoir.
Les bioénergies
Les précipitations, le rayonnement solaire, l'évaporation et la température influent sur la croissance de la végétation et donc le rendement des biocarburants. Les cultures ont elles-même un impact sur les cycles du carbone, de l’azote et de l’eau, c’est pourquoi une modélisation précise de ces interactions est essentielle pour estimer l’efficacité et le rendement économique de ces sources d’énergie.
Le changement climatique en cours induit des modifications des régimes de pluie, de vent, de la couverture nuageuse et de la température. Ces paramètres climatiques modifiés vont impacter la disponibilité des ressources en énergies renouvelables.
GÉRER LES CONSÉQUENCES
DE LA VARIABILITÉ DU CLIMAT
Le climat connaît des variations sur différentes échelles spatiales et temporelles (variations jour/nuit, été-hiver, d’une année sur l’autre….). Ces variations doivent être gérées par le secteur de l’énergie à plusieurs niveaux.
1. Gérer l’équilibre offre-demande
L’offre électrique est impactée directement par la variabilité climatique dès lors qu’elle repose sur des énergies renouvelables dont la production n’est pas pilotable. Elle peut dépendre indirectement du climat pour les autres sources d’énergie.
La demande des consommateurs varie en fonction de la météo. Un pic de consommation est constaté lors des vagues de froid (chauffage) ou de chaleur (climatisation).
Pour éviter les situations de black-out (coupures importantes du courant électrique), les réseaux de transport d’électricité doivent assurer en permanence l’équilibre offre/demande. L’augmentation de la part des énergies renouvelables variables représente donc un défi pour l’équilibrage des réseaux à une échelle qui dépasse souvent celle d’un seul pays. Les périodes de faible production demanderont d’autres ressources pilotables, ou bien l’utilisation d’énergie stockée. Les périodes de forte production associées à une faible demande devront être utilisées pour le stockage ou l’export.
2. Anticiper les prix du marché
Le prix de l’électricité, et de l’énergie en général dépend de l’offre et de la demande. L’estimation des prix et de la gestion du parc de production est un exercice quotidien auquel se livrent les producteurs et les gestionnaires de réseaux. Ils doivent pour cela disposer de prévisions météorologiques précises leur permettant d’estimer les prix. La demande de précision pour ces prévisions sera croissante avec l’augmentation de la part des renouvelables. Essentielles pour le court terme (quelques heures à quelques jours), les prévisions météorologiques sont également intéressantes à une échelle saisonnière, où elles peuvent donner de grandes tendances de l’évolution des prix et des ressources à mettre en œuvre.
3. Planifier les opérations
Les conditions de fonctionnement et de maintenance peuvent dépendre des prévisions météorologiques et climatiques. Quelques exemples :
* Si les vitesses de vent ne sont pas assez élevées, il peut être intéressant de planifier les travaux de maintenance du parc éolien. En revanche, ces opérations sont à éviter pendant les tempêtes.
*
* Couper et transporter les arbres dans certaines régions des pays scandinaves ne peut s’effectuer que sur un sol gelé en hiver ou un sol sec en été. Les véhicules utilisés ne peuvent pas circuler sur les sols marécageux. Il est donc important de prédire avec précision les périodes de dégel selon les zones pour optimiser le déploiement des équipes.
*
* L’installation, la maintenance et le démantèlement des infrastructures off-shore ou côtières, comme des plateformes gaz et pétrolière offshore demandent des prévisions du niveau marin et des probabilités de vagues extrêmes sur des périodes assez longues.
ESTIMER LES RISQUES INDUITS PAR LES EXTRÊMES MÉTÉOROLOGIQUES
Si les événements météorologiques extrêmes sont aujourd’hui peu fréquents, ils peuvent générer de très lourds dégâts économiques et matériels. Le secteur de l’énergie a besoin d’estimer les risques afin de dimensionner correctement les infrastructures ou à défaut anticiper les frais associés.
Quels risques associés aux extrêmes météorologiques ?
* Extrême météorologique : inondation
* Risques de submersion des centrales thermiques et des postes électriques
*
* Extrême météorologique : vagues de chaleur
* Risque : les circuits de refroidissement des centrales thermiques peuvent être arrêtés et induire un arrêt ou ralentissement de la production de la centrale alors que la demande en électricité pour la climatisation augmente.
*
* Extrême météorologique : vagues de sécheresse
* Risque : étiage des rivières impactant le refroidissement des centrales et la production hydraulique
*
* Extrême météorologique : fortes intempéries (rafales de vent, pluies verglaçantes…)
* Risque : dégâts matériels sur les pylônes, les éoliennes
*
* Extrême météorologique : vagues de froid
* Risque : augmentation de la consommation entraînant un risque de rupture du réseau
ET DEMAIN ?
Les experts du GIEC sont formels : le climat se réchauffe. Si nous ne souhaitons pas dépasser un réchauffement global supérieur à 2°C d’ici
2 100 (seuil au-delà duquel plusieurs dégâts seraient irréversibles notamment la remontée du niveau marin), il est nécessaire que les énergies bas carbone (énergies renouvelables et nucléaire) atteignent 90% du mix global énergétique d’ici la fin du siècle.
Le secteur de l’énergie doit donc faire face à un double défi, réduire les émissions de gaz à effet de serre en augmentant la part d’énergie bas carbone et gérer la dépendance accrue au climat liée à une part plus importante de renouvelables dans le mix énergétique.
CAS DE LA FRANCE : MIX ÉNERGÉTIQUE ET PART DES ÉNERGIES BAS-CARBONE
Comme dans d’autres pays, la France s’est engagée dans une transition énergétique à moyen terme pour atteindre un objectif de réduction de ses émissions de gaz à effet de serre. Elle a prévu notamment d’orienter son mix énergétique pour le rendre moins carboné, tout en diminuant en parallèle sa consommation énergétique finale. Dans le cadre de cette transition, le mix énergétique de la France conserve un socle nucléaire, qui permet à la France, avec l'énergie hydraulique, de produire massivement une énergie bas carbone.
Pour réduire les gaz à effet de serre, la loi relative à la transition énergétique pour la croissance verte (LTECV), votée en 2015, prévoit notamment :
* Une baisse importante de la consommation des énergies fossiles (-30% en 2030 par rapport à 2012)
*
* Une augmentation de la part des énergies renouvelables dans la consommation finale (23% en 2020, 32% en 2030 dont 40% pour la production électrique)
*
* D’ici 2050, la diminution de moitié de la consommation énergétique finale de 2012. Cela sous-entend d’agir dans différents secteurs comme celui des bâtiments, de l’industrie, des transports, de l’agriculture.
VOIR AUSSI
* Consulter la fiche web "L'essentiel sur... le GIEC"
* Voir la rubrique "Découvrir et comprendre le climat et l'environnement"
* Voir la rubrique "Découvrir et comprendre les énergies renouvelables"
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
Les particules élémentaires de la matière |
|
|
|
|
|
Les particules élémentaires de la matière
Publié le 4 mars 2016
Les objets, la lumière, l’électricité… La matière qui nous entoure est un assemblage de particules élémentaires reliées entre elles par des interactions. C’est ce que décrit la théorie du modèle standard de la physique des particules. Cette théorie explique l’origine, la composition et les propriétés intimes de la matière et des forces à l’aide de « grains » élémentaires. Certaines de ces particules ont été observées et étudiées depuis longtemps. D’autres commencent tout juste à être « détectées », comme le boson de Higgs. Certaines n’ont cependant toujours pas pu être débusquées par les plus puissants détecteurs du monde.
LES PARTICULES,
INGRÉDIENTS DE LA MATIÈRE
La matière qui nous entoure est composée de particules élémentaires, plus petites que les atomes. Ces « briques » microscopiques sont définies par plusieurs propriétés :
* une masse : une particule est plus ou moins « massive ». À cette échelle infiniment petite, la masse s’exprime en énergie (électronvolt) ;
*
* une charge électrique : une particule peut posséder des propriétés électriques ou non ;
*
* un spin : responsable d’une partie des propriétés magnétiques, à l’échelle subatomique ;
*
* une « charge de couleur » : rouge, verte ou bleue (attention : à l’échelle des particules, la notion de « couleur » n’est pas la même qu’à l’échelle humaine ; il s’agit d’un code auquel on peut attribuer 3 possibilités, représentées par trois couleurs).
*
Selon leurs propriétés et leur environnement, les particules peuvent s’attirer, rester ensemble, s’éviter, ne pas interagir du tout…
Propriétés de quelques particules
Masse Charge Spin Couleur
Quark up 1,5->4 Me/c2 +2/3 ½ 1 couleur (rouge, vert ou bleu)
Quark down 4->8 MeV/c2 -1/3 ½ 1 couleur (rouge, vert ou bleu)
Electron ≈ 0,5 MeV/c2 -1 ½ pas de couleur
Neutrino ve < 2,5 eV/c2 0 ½ pas de couleur
Photon 0 eV/c2 ≈ 0 1 pas de couleur
Gluon 0 eV/c2 0 1 1 couleur +1 « anti-couleur »
Boson de Higgs ≈ 125 GeV/c2 0 0 pas de couleur
Positon ≈ 0,5 MeV/c2 +1 ½ pas de couleur
DEUX GRANDES FAMILLES :
LES « GRAINS » DE MATIÈRE
ET LES CHAMPS DE FORCE
De façon générale, il existe deux grandes familles de particules-clés : les fermions et les bosons. Les premiers constituent les briques de matières tandis que les seconds sont des champs de force qui permettent à ces briques d’interagir et de s’assembler.
NB : Les « antiparticules » sont des particules (fermions ou bosons) de charge électrique et de couleur opposées à celles des particules « standard ».
Les particules élémentaires. © CEA - Cliquez sur l'image pour l'agrandir.
DES PARTICULES ÉLÉMENTAIRES
AUX ATOMES :
COMPRENDRE L’INFINIMENT PETIT
Les atomes, encore parfois présentés à tort comme plus petites unités de matière, sont constitués de fermions, « particules de matière », maintenues ensemble par des bosons, « particules de force ».
* Le noyau d’un atome est composé de protons et de neutrons. Ces éléments sont des assemblages de quarks (hadrons baryoniques) de la famille des fermions.
*
* Ils sont maintenus ensemble grâce à des échanges continus de gluons, qui appartiennent à la famille des bosons.
*
* Des électrons circulent autour du noyau : ces leptons sont liés au noyau par des photons (interaction électromagnétique).
*
Grâce aux gluons, les quarks peuvent s’assembler et former des particules composites. On ne parle plus de particules élémentaires, mais de hadrons (assemblages de quarks).
Cliquez sur l'image pour l'agrandir.

Les assemblages de particules. © CEA
LES OUTILS DE RECHERCHE
Beaucoup de particules élémentaires ne sont pas stables. Elles se désintègrent rapidement en d'autres particules, ce qui rend leur étude difficile. Sonder la matière à l’échelle subatomique nécessite des outils de pointe :
* Les accélérateurs de particules permettent de provoquer des collisions de particules à des vitesses proches de celle de la lumière, pour en créer de nouvelles et étudier leurs propriétés. Il est possible de recréer des conditions (d'énergie, de température…) proches de celles qui existaient au début de l'Univers. Ces accélérateurs produisent ainsi des particules fugaces qui existaient dans les premiers instants de l’Univers. Ces particules sont observées grâce à des détecteurs géants. Le LHC (Large Hadron Collider), plus grand accélérateur de particules du monde, est installé dans un tunnel en forme d’anneau de 27 km de circonférence, creusé à 100 mètres sous terre entre la France et la Suisse.
*
* Les observatoires spatiaux : l’étude de l’Univers est intimement liée à la physique des particules. Elles tendent toutes les deux à comprendre l’origine de l’Univers, son évolution et sa composition. Par exemple, Le télescope HESS II étudie des rayons cosmiques appelés « sursauts gamma », qui sont constitués de jets de photons très énergétiques. Les rayonnements cosmiques peuvent être également composés de protons, noyaux d’hélium ou encore d’électrons.
Les particules élémentaires de la matière
Publié le 4 mars 2016
Les objets, la lumière, l’électricité… La matière qui nous entoure est un assemblage de particules élémentaires reliées entre elles par des interactions. C’est ce que décrit la théorie du modèle standard de la physique des particules. Cette théorie explique l’origine, la composition et les propriétés intimes de la matière et des forces à l’aide de « grains » élémentaires. Certaines de ces particules ont été observées et étudiées depuis longtemps. D’autres commencent tout juste à être « détectées », comme le boson de Higgs. Certaines n’ont cependant toujours pas pu être débusquées par les plus puissants détecteurs du monde.
LES PARTICULES,
INGRÉDIENTS DE LA MATIÈRE
La matière qui nous entoure est composée de particules élémentaires, plus petites que les atomes. Ces « briques » microscopiques sont définies par plusieurs propriétés :
* une masse : une particule est plus ou moins « massive ». À cette échelle infiniment petite, la masse s’exprime en énergie (électronvolt) ;
*
* une charge électrique : une particule peut posséder des propriétés électriques ou non ;
*
* un spin : responsable d’une partie des propriétés magnétiques, à l’échelle subatomique ;
*
* une « charge de couleur » : rouge, verte ou bleue (attention : à l’échelle des particules, la notion de « couleur » n’est pas la même qu’à l’échelle humaine ; il s’agit d’un code auquel on peut attribuer 3 possibilités, représentées par trois couleurs).
*
Selon leurs propriétés et leur environnement, les particules peuvent s’attirer, rester ensemble, s’éviter, ne pas interagir du tout…
Propriétés de quelques particules
Masse Charge Spin Couleur
Quark up 1,5->4 Me/c2 +2/3 ½ 1 couleur (rouge, vert ou bleu)
Quark down 4->8 MeV/c2 -1/3 ½ 1 couleur (rouge, vert ou bleu)
Electron ≈ 0,5 MeV/c2 -1 ½ pas de couleur
Neutrino ve < 2,5 eV/c2 0 ½ pas de couleur
Photon 0 eV/c2 ≈ 0 1 pas de couleur
Gluon 0 eV/c2 0 1 1 couleur +1 « anti-couleur »
Boson de Higgs ≈ 125 GeV/c2 0 0 pas de couleur
Positon ≈ 0,5 MeV/c2 +1 ½ pas de couleur
DEUX GRANDES FAMILLES :
LES « GRAINS » DE MATIÈRE
ET LES CHAMPS DE FORCE
De façon générale, il existe deux grandes familles de particules-clés : les fermions et les bosons. Les premiers constituent les briques de matières tandis que les seconds sont des champs de force qui permettent à ces briques d’interagir et de s’assembler.
NB : Les « antiparticules » sont des particules (fermions ou bosons) de charge électrique et de couleur opposées à celles des particules « standard ».
DES PARTICULES ÉLÉMENTAIRES
AUX ATOMES :
COMPRENDRE L’INFINIMENT PETIT
Les atomes, encore parfois présentés à tort comme plus petites unités de matière, sont constitués de fermions, « particules de matière », maintenues ensemble par des bosons, « particules de force ».
* Le noyau d’un atome est composé de protons et de neutrons. Ces éléments sont des assemblages de quarks (hadrons baryoniques) de la famille des fermions.
*
* Ils sont maintenus ensemble grâce à des échanges continus de gluons, qui appartiennent à la famille des bosons.
*
* Des électrons circulent autour du noyau : ces leptons sont liés au noyau par des photons (interaction électromagnétique).
*
Grâce aux gluons, les quarks peuvent s’assembler et former des particules composites. On ne parle plus de particules élémentaires, mais de hadrons (assemblages de quarks).
LES OUTILS DE RECHERCHE
Beaucoup de particules élémentaires ne sont pas stables. Elles se désintègrent rapidement en d'autres particules, ce qui rend leur étude difficile. Sonder la matière à l’échelle subatomique nécessite des outils de pointe :
* Les accélérateurs de particules permettent de provoquer des collisions de particules à des vitesses proches de celle de la lumière, pour en créer de nouvelles et étudier leurs propriétés. Il est possible de recréer des conditions (d'énergie, de température…) proches de celles qui existaient au début de l'Univers. Ces accélérateurs produisent ainsi des particules fugaces qui existaient dans les premiers instants de l’Univers. Ces particules sont observées grâce à des détecteurs géants. Le LHC (Large Hadron Collider), plus grand accélérateur de particules du monde, est installé dans un tunnel en forme d’anneau de 27 km de circonférence, creusé à 100 mètres sous terre entre la France et la Suisse.
*
* Les observatoires spatiaux : l’étude de l’Univers est intimement liée à la physique des particules. Elles tendent toutes les deux à comprendre l’origine de l’Univers, son évolution et sa composition. Par exemple, Le télescope HESS II étudie des rayons cosmiques appelés « sursauts gamma », qui sont constitués de jets de photons très énergétiques. Les rayonnements cosmiques peuvent être également composés de protons, noyaux d’hélium ou encore d’électrons.
DOCUMENT cea LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 ] Précédente - Suivante |
|
|
|
|
|
|