ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

TERMITE

  initiation musicale

 

 

 

 

 

 

termite
(bas latin termes, -itis)

Insecte social blattoptéroïde, xylophage, aux pièces buccales broyeuses, à deux paires d'ailes égales pouvant se détacher par autotomie, abondant dans les régions tropicales. (Les termites forment l'ordre des isoptères.)

Les termites forment le groupe des isoptères, qui compte 2 000 espèces. Quelques espèces vivent en Europe, mais la plupart sont tropicales. Ces insectes, qui se nourrissent de bois (xylophages), de papier ou de champignons qu'ils cultivent, peuvent être de véritables fléaux dans les zones habitées, détruisant les vivres, les vêtements, les livres, les édifices en bois qui s'effondrent sans qu'un seul signe extérieur ait permis de le prévoir.

LES SOCIÉTÉS DE TERMITES
Les termites sont des insectes sociaux dont les colonies sont divisées en castes, comme chez les fourmis. On appelle d'ailleurs parfois les termites « fourmis blanches », bien que les fourmis appartiennent à un autre groupe d'insectes, les hyménoptères.
Dans une termitière, il y a un couple d'individus reproducteurs, le roi et la reine (tout d'abord ailés, ils perdent leurs ailes après la fondation de la colonie), et des individus sans ailes et stériles, les ouvriers et les soldats. Ces derniers, qui assurent la défense de la colonie, possèdent une grosse tête et des mandibules souvent énormes. Les ouvriers s'occupent du ravitaillement et du soin aux larves. Les larves élaborent des aliments, qu'elles émettent avec leur salive ou par l'anus ; elles en nourrissent les soldats et les ouvriers, qui sollicitent ces aliments les uns des autres par attouchements (c'est un exemple de trophallaxie).
Le roi conserve ses dimensions normales, tandis que chez la femelle fécondée l'abdomen rempli d'œufs grandit énormément, acquérant cinquante à soixante fois, quelquefois des centaines de fois, le volume du reste du corps. Dans une espèce africaine, la reine atteint 12 cm de long et 3 cm de large. Elle peut pondre 36 000 œufs par jour !
Les termitières ont parfois des tailles considérables. Chez Bellicositermes, d'Afrique australe, la termitière peut atteindre 6 m de haut et une trentaine de mètres de diamètre à la base.

LES RELATIONS AVEC D'AUTRES INSECTES
Certaines fourmis d'Afrique ou d'Amérique du Sud sont spécialisées dans la razzia des termitières, dont elles peuvent dévorer la reine. Comme chez les abeilles, la destruction des reproducteurs d'une colonie est suivie de l'apparition de sexués de remplacement, qui sont des ouvriers ou des larves. Toutefois, aussitôt qu'un couple royal est reconstitué, les autres sexués sont massacrés.
D'autres insectes (certains coléoptères et diptères) peuvent vivre en association avec les termites ; ils sont dits « termitophiles ».

 

   DOCUMENT   larousse.fr    LIEN

 
 
 
initiation musicale toulon  

Une avancée majeure dans la compréhension de la prédisposition du nouveau-né aux méningites à streptocoque du groupe B

  initiation musicale

 

 

 

 

 

 

Une avancée majeure dans la compréhension de la prédisposition du nouveau-né aux méningites à streptocoque du groupe B

COMMUNIQUÉ | 23 FÉVR. 2021 - 11H29 | PAR INSERM (SALLE DE PRESSE)

BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE


 
Chaque année à travers le monde, des milliers de nourrissons sont affectés par les méningites à streptocoques du groupe B. Souvent mortelle, la maladie peut aussi entraîner de lourdes séquelles chez les bébés qui survivent. Les adultes sont néanmoins épargnés par ce type de méningite. Des chercheurs de l’Inserm, du Collège de France, du CNRS, de l’Institut Pasteur, de l’Université de Paris et de l’AP-HP apportent désormais des éléments de réponse expliquant la prédisposition du nouveau-né à faire des méningites à Streptocoque du groupe B. Ils ont identifié et démontré que les récepteurs d’une protéine bactérienne permettant le franchissement de la barrière hémato-encéphalique[1] étaient surexprimés chez le nouveau-né et absents chez l’adulte. Les résultats de leurs travaux sont publiés dans la revue « Journal of Clinical Investigation ».

Les streptocoques du groupe B sont présents dans le microbiote vaginal de 20 à 30 % des femmes. Pour éviter l’infection du nouveau-né au moment de la naissance, qui pourrait entrainer une septicémie et dans les cas les plus graves, une méningite, de nombreux pays développés, dont la France, ont mis en place un dépistage vaginal quelques semaines avant l’accouchement. Les femmes porteuses de streptocoques du groupe B reçoivent dans ce cas des antibiotiques au moment de l’accouchement.
Cette stratégie a permis de réduire fortement l’incidence des infections à streptocoques du groupe B survenant durant la première semaine de vie mais n’a eu aucun effet sur celles survenant entre 1 semaine et 3 mois de vie.  
Par ailleurs, dans de nombreux pays du monde, aucun dépistage prénatal n’est proposé, et de nombreux bébés décèdent après la naissance d’une méningite à streptocoque du groupe B. Il s’agit donc d’un problème majeur de santé publique.
 
Prédisposition des nourrissons
Pour mieux comprendre la maladie et améliorer la prise en charge des mères et des enfants, la chercheuse Inserm Julie Guignot et son groupe de recherche à l’Institut Cochin (Inserm/CNRS/Université de Paris)[2] ont cherché à comprendre ce qui prédispose les nourrissons à cette maladie, alors que les enfants et les adultes ne sont qu’exceptionnellement concernés par ce type de méningite.
Dans de précédents travaux, les scientifiques avaient montré qu’un variant de streptocoque du groupe B était responsable de plus de 80 % des cas de méningites chez le nouveau-né. Ce variant exprime à sa surface des protéines spécifiques qui jouent un rôle essentiel dans le franchissement de la barrière hémato-encéphalique qui sépare le sang du cerveau.
Par des approches complémentaires, les chercheurs ont démontré qu’une des protéines exclusivement exprimées par ce variant reconnaissait de manière spécifique deux récepteurs présents dans les vaisseaux sanguins cérébraux qui constituent l’élément principal de la barrière hémato-encéphalique. Grâce à des prélèvements humains, ils ont démontré que ces récepteurs sont surexprimés chez les nouveau-nés. Ces récepteurs cérébraux ne sont en revanche pas présents chez l’adulte, ce qui explique que le streptocoque du groupe B n’est que très rarement responsable de méningites au-delà de la première année de vie, les bactéries ne pouvant atteindre le cerveau.

Grâce à des modèles animaux de méningite, les chercheurs ont confirmé leurs résultats, montrant que l’expression de ces récepteurs durant la période post-natale contribuait à la susceptibilité du nouveau-né à la méningite due au variant de streptocoque du groupe B.
Pour les chercheurs, ces résultats ouvrent des pistes thérapeutiques intéressantes. « L’idée serait de développer des traitements qui ciblent ces récepteurs au niveau de la barrière hémato-encéphalique. A plus long terme, nous aimerions étudier les facteurs de susceptibilité individuels conduisant au développement de ces infections. Ceci permettrait de réaliser un suivi personnalisé des nourrissons à risque nés de mère colonisée par ce variant », explique Julie Guignot.
 
[1] Barrière physiologique entre le sang et le cerveau qui protège ce dernier des substances toxiques et des micro-organismes pathogènes
[2] Le laboratoire Biologie moléculaire structurale et processus infectieux (CNRS/Institut Pasteur), le Centre interdisciplinaire de recherche en biologie (CNRS/Collège de France/INSERM), l’Institut pour l’avancée des biosciences (CNRS/INSERM/UGA), entre autres, ont également participé à ces travaux.

 

  DOCUMENT        inserm        LIEN

 
 
 
initiation musicale toulon  

Observer comment les structures à fine échelle de la circulation océanique contrôlent la distribution phytoplanctonique et sa variabilité dans l’océan

  initiation musicale

 

 

 

 

 

 

Observer comment les structures à fine échelle de la circulation océanique contrôlent la distribution phytoplanctonique et sa variabilité dans l’océan côtier

mardi 14 août 2018

Une collaboration multidisciplinaire entre chercheurs français
Une collaboration multidisciplinaire entre chercheurs français(1) et espagnols a mis en évidence le rôle des processus de transport à fine échelle sur l’activité biologique océanique grâce à l’application d’outils des systèmes complexes sur des observations pluriannuelles à haute résolution de l’océan côtier. Ces chercheurs infèrent les structures géométriques tridimensionnelles de l’écoulement en utilisant de puissants diagnostics dérivés des vitesses de surface mesurées par des radars haute fréquence (HF). Ceci a notamment permis de suivre et de différencier les structures convergentes et divergentes de la circulation océanique pour dévoiler, avec un niveau de détails inégalé, comment elles contrôlent la distribution spatiale et la variabilité temporelle de la biomasse phytoplanctonique observée par satellite.

Le phytoplancton est un maillon clé des écosystèmes marins : les producteurs primaires utilisent le carbone inorganique dissous, l’énergie lumineuse et les nutriments essentiels pour former en surface de la matière organique qui peut ensuite s’exporter vers l’océan profond. Ces producteurs constituent la base des chaînes trophiques marines et soustraient du dioxyde de carbone de l’atmosphère, ce qui contribue à la régulation du climat de la Terre. Par ailleurs, les processus physiques induits par l’écoulement turbulent océanique jouent un rôle essentiel dans la dynamique du plancton. Alors que les processus à grande échelle sont bien documentés, le rôle des fines échelles est encore largement incompris, principalement du fait du manque d’observations continues à haute résolution.

Des chercheurs du SOCIB, de l'IMEDEA, du MIO et du LEGOS ont analysé les vitesses de radars haute fréquence en utilisant une nouvelle métrique appelée divergence lagrangienne, en association avec d’autres techniques bien établies dérivées des systèmes complexes, afin de dévoiler les structures géométriques de l’écoulement à fine échelle (fronts, tourbillons, filaments, etc.) en Méditerranée occidentale. En comparant avec les concentrations de chlorophylle observées par satellite, cette combinaison de diagnostics permet de distinguer les structures de convergence le long desquelles les particules et les stocks existants de phytoplancton s’agrègent et les zones de divergence marquée où les vitesses verticales vers la surface prédominent et favorisent la nouvelle production grâce à un apport soutenu de sels nutritifs.

Les panneaux de gauche documentent un événement de divergence dans le canal d’Ibiza (Méditerranée occidentale) le 26 janvier 2014 : a) Barrières au transport (en noir) dérivées des champs d’exposants de Lyapunov qui délimitent des régions dont les concentrations de chlorophylle (en couleur) sont distinctes, b) Divergence de l’écoulement de surface accumulée le long des trajectoires dérivées des radars HF (divergence lagrangienne). Les structures divergentes identifient les régions où le champ de vitesse de surface diverge sur une période de 4 jours, ce qui implique des vitesses verticales soutenues vers la surface. c) Chlorophylle accumulée (données satellite) le long des trajectoires dérivées des radars HF. Les régions enrichies en chlorophylle (a,c) correspondent bien aux zones de forte divergence (b).
Les panneaux de droite documentent un événement de convergence dans le canal d’Ibiza le 5 mars 2014 : d) Structures attractives de l’écoulement (en noir) dérivées des champs d’exposants de Lyapunov qui s’alignent avec les filaments riches en chlorophylle (en couleur), e) Divergence de l’écoulement de surface accumulée le long des trajectoires dérivées des radars HF. Les structures où la divergence est négative identifient les régions où le champ de vitesse de surface converge, suggérant l’accumulation et l’agrégation de matériel. f) Chlorophylle accumulée (données satellite) le long des trajectoires dérivées des radars HF. Le filament enrichi en chlorophylle (b,f) correspond bien aux zones de forte convergence (d).

Cette étude apporte un nouvel éclairage sur les interactions biophysiques dans l’océan se produisant à différentes échelles spatio-temporelles. Ces résultats ouvrent de nouvelles perspectives pour mieux apprécier les effets du transport et de la dispersion due aux courants sur le devenir des substances océaniques. Une application serait, par exemple, de produire des prédictions à court terme des zones d’agrégation des débris plastiques, des méduses, des proliférations de phytoplanctons toxiques et des nappes accidentelles d’hydrocarbures.

Note(s):
*         Les laboratoires impliqués sont le SOCIB (Balearic islands coastal observing and forecasting system) à Palma (Espagne), le Mediterranean institute for advanced studies (IMEDEA) à Esporles (Espagne), l’Institut méditerranéen d’océanographie (MIO/PYTHÉAS, CNRS / Université de Toulon / IRD / AMU) et le Laboratoire d’études en géophysique et océanographie spatiales (LEGOS/OMP, UPS / CNRS / CNES / IRD).
*
Source(s):
Hernández-Carrasco, I., Orfila, A., Rossi, V. and V. Garçon (2018). Effect of small scale transport processes on phytoplankton distribution in coastal seas, Scientific Reports, doi: 10.1038/s41598-018-26857-9.

Contact(s):
*         Vincent Rossi, MIO/PYTHÉAS
*         vincent [dot] rossi [at] mio [dot] osupytheas [dot] fr, 04 86 09 06 28
*         Véronique Garcon, LEGOS/OMP
*         veronique [dot] garcon [at] legos [dot] obs-mip [dot] fr, 05 61 33 29 57

 

   DOCUMENT         CNRS         LIEN
 

 
 
 
initiation musicale toulon  

ENDOCYTOSE

  initiation musicale

 

 

 

 

 

 

Endocytose

L'endocytose (grec endon (dedans) et kutos (cellule)) est le mécanisme de transport de molécules, voire de particules (virales, bactériennes, etc.), vers l'intérieur de la cellule.
L'endocytose peut être effectuée par toutes les cellules eucaryotes à l'exception des hématies (globules rouges)

    3    la phagocytose.    L’endocytose (ou internalisation) a lieu quand une partie de la membrane entoure complètement une particule mineure, sans gros volume et la fait pénétrer de l’extérieur vers l’intérieur d’une cellule.
Ce mécanisme membranaire (ou quasi-membranaire) est très important dans la vie d’une cellule, car il permet l'internalisation de molécules spécifiques grâce à des récepteurs spécifiques dans la cellule (et notamment dans le cytosol), la molécule à endocyter étant appelée ligand (par ex., la transférine (ligand) qui va se fixer aux récepteurs membranaires spécifiques de la transférine1).
1. L’endocytose d’une molécule se déroule en plusieurs étapes :        1    l'« adressage » spécifique de la molécule dans les « puits d’endocytose » (les zones de la membrane spécialisées dans l'endocytose) ;
2. la fixation sur la face interne de la membrane d'un réseau de complexes protéiques impliquant notamment la clathrine ;
3. la polymérisation des molécules les unes avec les autres entraînant l'invagination de la membrane, sa vésicularisation et enfin le détachement (nécessitant l'hydrolyse de GTP) et la migration de la vésicule vers l’intérieur de la cellule ;
    4    Ensuite, les clathrines se détachent de la paroi de la vésicule qui devient une vésicule lisse.    Cette vésicule va fusionner avec un endosome dit « de triage », à pH acide (pH=6). Le ligand étant très faiblement lié aux récepteurs il y a dissociation, puis le contenu libéré est trié : certains récepteurs sont directement recyclés, exocytés vers la membrane et réincorporés à celle-ci selon un procédé inconnu. Les ligands, eux, sont acheminés vers différentes destinations selon leur utilité à la cellule. Une partie de ce matériel internalisé sera traité par les « endosomes tardifs », une autre par le compartiment de recyclage d'endocytose (tous deux sont des espèces maturées de l'endosome primaire). Le matériel contenu par un endosome tardif est généralement destiné à la dissociation : l'endosome soit fusionne avec un lysosome, soit en devient un par maturation : son pH diminue en raison de l'activité de l'ATPase vacuolaire et il devient capable de lyser des molécules. Les molécules passant par le compartiment de recyclage de l'endocytose sont recyclées et ré-intégrées à la membrane plasmique. Ainsi la composition de la surface membranaire varie très peu.
Une partie des molécules internalisées n'est ni recyclée, ni hydrolysée. Elle passe par l'appareil de Golgi (ex. : le cholestérol, qui utilise comme protéine spécifique l'Apo B et comme transporteur membranaire le LDL).
* Selon la taille du matériel absorbé, on distingue deux processus :        •    la pinocytose (« boisson » de la cellule), qui est l’ingestion de fluides ou de macromolécules au moyen de petites vésicules de diamètre inférieur ou égal à 150 nm ;
    •    la phagocytose (« alimentation » de la cellule), qui est l’absorption de grosses particules, voire de cellules, par des vésicules de diamètre toujours supérieur à 250 nm et pouvant atteindre plusieurs micromètres : les phagosomes.
    Pinocytose
L'endocytose en phase liquide correspond au prélèvement d'une gouttelette (diamètre inférieur à 0,1 micromètre) d'un liquide extra cellulaire contenant ou non des petites molécules. L'ingestion se fait par invagination de la membrane plasmique qui se déprime en cupule, puis emprisonne le liquide à ingérer dans une petite vésicule qui sera libérée dans le cytoplasme. Ce phénomène se produit en permanence dans la plupart des cellules eucaryotes.

Pinocytose à vésicules
L'observation au microscope électronique montre que les vésicules de pinocytose sont recouvertes d'un feutrage épais de 15 nanomètre environ, côté cytoplasmique. Ces vésicules proviennent d'invaginations de la membrane que l'on nomme « puits recouverts » et qui se forment dans des régions déterminées de la membrane où sont regroupés des récepteurs membranaires spécifiques.
Étapes:
        1    Formation de puits recouverts, ou puits mantelés    Il y a un assemblage spontané sur la face cytoplasmique d'un réseau à mailles hexagonales d'une protéine fibreuse, la clathrine, puis invagination de la membrane en puits recouverts (ou puits mantelés ou puits tapissés).
2. Mécanisme moléculaire de la vésiculation
Le morceau de membrane emprisonné dans la cage de clathrine, qui se déforme peu à peu, se refermera, aidé par la dynamine qui, grâce à l'utilisation de l’énergie d'hydrolyse du GTP, va changer de conformation pour s'enrouler autour du col vésiculaire pour permettre la force de contraction nécessaire pour séparer la vésicule close de la membrane.

3. Concentration des composés à internaliser au niveau de ces puits
Fixation de ces composés (appelés les ligands) à leurs récepteurs spécifiques (qui sont des protéines intrinsèques) et diffusion des récepteurs « chargés » jusqu'à un puits recouvert en formation. Les récepteurs se fixent à des protéines d'adaptation (adaptine) elles-mêmes reliées à la clathrine.
4. Internalisation des composés fixés à leurs récepteurs par formation de vésicule recouverte
La fabrication d'une vésicule à partir d'un puits est très rapide (environ une minute)2. Dans les cellules en culture, on estime que la surface occupée par les puits recouverts représente 2 % de celle de la membrane cytoplasmique; 2500 vésicules recouvertes environ s'y forment toutes les minutes.

5. Perte du revêtement de clathrine et migration intracytoplasmique de la vésicule
Elle perd rapidement son revêtement dont le rôle est d'engendrer une surface sphérique à partir d'une surface plane. Ce déshabillage, qui nécessite de l'ATP, est indispensable pour que la membrane de la vésicule puisse interagir avec le cytosquelette et ses protéines motrices et que la vésicule puisse être transporté dans le cytosol. La clathrine retourne vers la membrane plasmique.

6. Fusion avec les endosomes et dissociation ligand-récepteur
La vésicule d'endocytose fusionne avec un endosome (le résultat de la fusion s'appelle encore endosome). L'acidification du milieu interne par l'intermédiaire de pompes H+ ATP dépendante situées dans la membrane de l'endosome provoque la dissociation du complexe récepteur/ligand.
7. Séparation des récepteurs et des ligands dans les vésicules à destinée différente
Un tri s'opère: les récepteurs se concentrent en un endroit précis de la membrane de l'endosome, d'où bourgeonnent des vésicules qui fusionnent avec la membrane plasmique = recyclage des récepteurs. Le contenu des endosomes, quant à lui est dirigé via d'autres vésicules, vers les lysosomes où aura lieu la digestion des molécules absorbées.

* Exemples[modifier | modifier le code]        •    Le cholestérol, présent sous deux formes dans les vaisseaux sanguins : lipoprotéine de basse densité (LDL) et lipoprotéine de haute densité (HDL). Le cholestérol nécessaire au milieu intracellulaire est pris dans la matrice extracellulaire par pinocytose du LDL.
*
1. La phagocytose : mécanisme permettant d’ingérer un corps étranger afin de le digérer (animaux unicellulaires) ou de le détruire (macrophages du système immunitaire ou globules blancs) puis des lysosomes se positionnent autour de la vésicule et déversent leurs enzymes qui vont hydrolyser le corps ainsi ingéré.    Notes et références[modifier | modifier le code]        1    ↑ Transférine : molécule permettant d'incorporer le fer dans les hématies.
2.
3. ↑ Royet, « Endocytose 2-2 1.ppt » [archive], sur biologie.univ-mrs.fr, février 2009 (consulté le 9 juillet 2016).

 

 DOCUMENT      wikipédia    LIEN    
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ] Précédente - Suivante
 
 
 
Google