ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

INFORMATIQUE MÉDICALE

 

INFORMATIQUE MÉDICALE : ASPECTS SPÉCIFIQUES À LA CHIRURGIE PLASTIQUE ET À L'ODONTOLOGIE - 2IÈME PARTIE


L'informatique est utile à la chirurgie maxillo-faciale en ce qui concerne l'aide à la thérapeutique. Sont abordés les bases de données, l'aide à la prescription, les interactions médicamenteuses, et les contre-indications. La pré-visualisation est très utile dans le cas d'ostéotomie ou de chirurgie de la mandibule. Il est aussi possible de modéliser les tissus mous. La stéréolithographie a de l'intérêt en chirurgie crânio-faciale ; elle peut aussi être un outil de fabrication d'implants. Le robot réalise de façon autonome la tâche, le chirurgien devient superviseur. Ils se sont multipliés depuis 10 ans, mais leur utilisation revient cher malgré leur rapide rentabilité. A Nancy, c'est le robot Da Vinci qui est utilisé.

Origine
SPI-EAO, Faculté de médecine, Université Henri Poincaré Nancy I, 2006
Générique
SPI-EAO SCD médecine Nancy

 

VIDEO              CANAL  U             LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

MÉDICAMENTS ET CHIMIE

 

Transcription [1] de la 617e conférence de l'Université de tous les savoirs donnée le 24 juin 2006 revue par l'auteur.


Bernard Meunier : « Médicaments et chimie : un brillant passé et un vrai futur »
Très tôt l'homme a utilisé les produits de la Nature pour traiter les différentes maladies auxquelles il était confronté. Les premiers traités de chimie thérapeutique moderne, décrivant la relation entre un composé chimique et une activité thérapeutique, datent maintenant de plusieurs siècles. Nous allons présenter l'histoire commune de la chimie et du médicament sur plusieurs millénaires avant de décrire les enjeux des thérapies du futur.
Un médicament est une substance possédant des propriétés curatives ou préventives destinées à guérir, soulager ou prévenir des maladies. Il contient à la fois la notion de guérison et de prévention. « Médicament » et son synonyme « remède » viennent du mot latin « mederi » qui signifie « soigner ».
Le mot « médicament » se traduit en anglais par « medication » et plus souvent par « drug », notamment en américain. Le terme « drug » ou « drogue » provient du latin « drogia ». Il est ambigu puisqu'il désigne aussi bien un médicament qu'une substance illicite. En français, il ne désigne plus une préparation magistrale d'un pharmacien d'officine, ou d'un droguiste traditionnel, depuis une cinquantaine d'années.
Les premières sources de médicament sont les plantes. Les chimistes vont très rapidement s'y intéresser. L'homme de Neandertal était déjà un spécialiste de l'utilisation des plantes, y compris pour un usage médicinal. Ainsi des roses trémières ont été retrouvées dans la bouche de néandertaliens qui avaient été ensevelis dans les tombes de la grotte d'Amuci (Israël) [2]. La rose trémière était un analgésique utilisé dans le traitement des infections buccales.
La médecine traditionnelle chinoise est la plus ancienne. Les premières traces écrites de la médecine traditionnelle chinoise remontent à près de 3 000 ans avant J.-C. Le légendaire empereur Shan-Nung avait un herbier de plantes médicinales (2 900 avant J.-C.) ; mais on retiendra surtout l'herbier de Li Shih-Chen de 1578 dont une version anglaise est disponible depuis 2002 sous le titre « Chinese medicinal herbs ».
Les Égyptiens utilisaient également les plantes comme médicaments. Un archéologue allemand, Georg Ebers, de l'université de Leipzig a découvert au XIXème siècle à Louxor un document extraordinaire qu'on appelle « le papyrus d'Ebers ». Ce papyrus qui fait 20 mètres de long est conservé à la bibliothèque de l'université de Leipzig. Cette sorte de codex datant du siècle d'Aménophis Ier (1525-1504 avant J.-C.) est une liste de près de 870 plantes à usage médical.
Hippocrate (né en Grèce sur l'île de Cos en 460 avant J.-C.) recense plus de 400 plantes pour traiter les maladies. Le terme grec « pharmakon » qui a donné « pharmacie » en français a un double sens. Il désigne à la fois la substance qui guérit ou remède, et le poison. En effet, les produits d'origine naturelle ne sont pas inoffensifs. Les grecs savaient parfaitement qu'en fonction de la dose un même produit pouvait avoir une activité curative qui allait soulager le malade ou bien une activité toxique et l'empoisonner. La toxicité est toujours dépendante de la dose.
Claude Galien, autre grand médecin grec (131-201 après J.-C.), est le premier à s'intéresser à la préparation même des médicaments à base de plantes. Son travail est à l'origine de la pharmacie galénique. La pharmacie galénique consiste à préparer à partir d'une substance, un médicament pour le rendre plus agréable, plus facilement assimilable. La pharmacie galénique a été considérée ces derniers temps comme un aspect traditionnel de la pharmacie mais elle retrouve actuellement une nouvelle jeunesse avec l'apport de nouveaux matériaux. Il s'agit d'améliorer l'efficacité des médicaments en améliorant leur biodisponibilité, leur distribution à travers les tissus, pour cibler les organes touchés. Galien a écrit, d'après ses contemporains, plus de cinq cents ouvrages. Malheureusement nous avons très peu de traces de ces ouvrages car leur quasi-totalité a été détruite lors d'un incendie dans le temple de la paix à Rome où il enseignait en 192 après J.-C.
Avicenne (Ibn Sina, né en Perse en 980, mort en 1037) est connu dans l'histoire du médicament comme le médecin arabe qui a permis de retrouver et transmettre les acquis de la médecine grecque et de la médecine égyptienne aux IX-Xèmes siècles. Le « Canon de la médecine » est son ouvrage le plus connu. Le volume 5 décrit 760 médicaments alors qu'Hippocrate en décrivait 400 et « le papyrus d'Ebers » 870. Traduit en latin entre 1150 et 1187 par Gérard de Crémone, cet ouvrage sera la référence médicale jusqu'au XVIIème siècle.
En Europe, après la perte des savoirs qui fait suite à l'effondrement de l'Empire romain, les connaissances sont retrouvées à travers la médecine arabe.
Les alchimistes transmettaient le savoir de ce qui était déjà les balbutiements de la chimie et de l'utilisation des plantes et des produits chimiques pour guérir. Paracelse, médecin alchimiste suisse (1493-1541) est le premier à introduire les produits chimiques de synthèse dans les traitements médicaux. Il signale les propriétés anesthésiques de « l'eau blanche » (éther éthylique ou diéthyléther) obtenue par action de l'acide sulfurique sur l'éthanol : « L'eau blanche fait tomber les poulets dans un sommeil profond dont ils se réveillent sans en subir aucun dommage. » Après l'utilisation des plantes et la reconnaissance de principes actifs dans les plantes, nous arrivons ainsi peu à peu à la création de nouvelles molécules.
L'histoire des médicaments en France du XVème au XVIIIème siècle voit la mise en place des préparations reproductibles, ce qu'on appellerait maintenant les bonnes pratiques de laboratoire. Dans l'industrie chimique et l'industrie pharmaceutique, tout ce qui touche les médicaments est largement codifié. Les cahiers de laboratoire sont écrits selon certains critères et les archives sont conservées pour l'essentiel du travail entre 15 et 20 ans. Ces bonnes pratiques ne sont pas récentes puisqu'elles remontent à Jean Le Bon. En 1326, il édite « l'Antidotaire de Nicolas » recommandant aux apothicaires de Paris de suivre de bonnes pratiques de laboratoire.
À partir du XVème siècle, les premiers livres de pharmacopée sont publiés en Europe, notamment :
Ricettario Fiorentino (Italie, XVème siècle)
Codex Medicamentarius (fin XVIème siècle)
Pharmacopea Parsisiensis (1638)
Pharmacopée universelle de Nicolas Lémery (1697)
Éléments de Pharmacie et de Chimie d'Antoine Baumé (1762)
La rédaction du Codex Medicamentarius, ordonnée en 1568, a demandé plus de quarante années de rédaction collective et a donné lieu à des versions régionales. Il fait partie des grands ouvrages de la vie intellectuelle de cette époque. Il expliquait comment avoir une préparation de médicaments parfaitement reproductible.
Les codex régionaux étaient largement inspirés des codex parisiens, mais il y avait tout de même des divergences et au moment de la rationalisation de la Révolution Française, les pharmacopées régionales ont été abandonnées au profit d'une référence nationale. La loi du 21 germinal de l'an XI, en 1803, impose un texte unique pour les recettes de pharmacopée classique.
La « Pharmacopée universelle » de Nicolas Lémery (1645-1715) est le premier ouvrage décrivant les interactions entre la chimie raisonnée et le monde du médicament. Nicolas Lémery avait une double formation. Après avoir travaillé comme aide apothicaire, il a fait des études de médecine à l'université de Montpellier, dont on n'oublie pas qu'elle a formé Rabelais. Nicolas Lémery y a occupé la Chaire de chimie avant de revenir à Paris et de donner rue Galande des cours de chimie raisonnée en faisant des expériences publiques. Il fait ainsi sortir la chimie de l'alchimie qui était totalement embourbée dans l'obscurantisme. Suivant la pensée raisonnée de Pascal et de Descartes, la révolution vers le siècle des Lumières est en cours. Pour Nicolas Lémery, la chimie va devenir une science raisonnée comme les mathématiques ou la physique. Pour lui, l'essentiel est la reproductibilité des expériences. « Le Cours de Chymie » publié en 1675 par Nicolas Lémery alors âgé de trente ans, a été l'ouvrage de référence en chimie réédité dix-neuf fois pendant un siècle avant d'être remplacé par les premiers livres de chimie moderne.
La chimie moderne, raisonnée, s'est développée grâce aux travaux de Lavoisier, Berthollet, Fourcroy et Guyton de Morveau. Ce quatuor a véritablement révolutionné la chimie à la fin du XVIIIème siècle. Ils introduisent la nomenclature chimique, c'est-à-dire la possibilité de nommer un composé chimique de manière rationnelle de façon à ce que tout le monde puisse parler du même produit dans tous les pays en se comprenant. Les chimistes disposent alors d'un langage universel et rationnel, totalement débarrassé de la poésie et de l'obscurantisme de l'alchimie. Avant 1789, le CO2 ou dioxyde de carbone avait plus de quarante noms différents dont « l'air fixe » ! " « La Méthode de Nomenclature chimique » (1787) par Guyton de Morveau, Lavoisier, Berthollet et Fourcroy, et « le Traité élémentaire de chimie » (1789) de Lavoisier marquent l'entrée de la chimie dans les sciences exactes. Parlons un peu de la découverte de l'eau de Javel.
À cette époque, le lin devait être blanchi avant la teinture. Cette opération était réalisée en posant les draps dans un pré. Le rayonnement solaire sur la chlorophylle dégageait de l'oxygène singulet qui provoquait le blanchiment du lin. Les lavandières et les paysans se disputaient l'usage des pâturages. Claude Berthollet en cherchant un agent de blanchiment a synthétisé en 1789 : l'hypochlorite. Cette découverte a été publiée dans les « Les Annales de chimie » créées par Fourcroy, Guyton de Morveau et Lavoisier quelques années auparavant. L'hypochlorite NaOCl est obtenu par oxydation de chlorures qui conduit à la formation de chlore, et la solution aqueuse obtenue devient stable en milieu alcalin, initialement de la cendre, source de potasse. La première usine de fabrication de l'hypochlorite se situait à Javelle, petit village de lavandières de l'Ouest parisien, d'où le nom de l'eau de Javel.
L'eau de Javel est un blanchissant mais aussi un agent de désinfection extraordinaire. Elle lutte efficacement contre les bactéries, les agents pathogènes et les virus, qui ne seront identifiés qu'au milieu du siècle suivant avec l'essor de la microbiologie. Elle a permis de nettoyer les hôpitaux, en particulier les sols des zones infectées, et de sauver des millions de vies. Le Dakin, solution d'hypochlorite coloré avec du permanganate, est toujours utilisé comme désinfectant et les dentistes nettoient les racines des dents infectées avec de l'hypochlorite, notamment pour tuer le virus du SIDA. L'agent désinfectant de l'eau de Javel c'est l'acide hypochloreux, celui là même qui est libéré par les enzymes des macrophages humains pour éliminer les pathogènes.
Le début du XIXème siècle, 1800-1850, voit la naissance de la chimie des produits naturels. Le développement de la chimie rationnelle et l'adoption de méthodes expérimentales rigoureuses permettent de caractériser les produits actifs des plantes médicinales.
La morphine est isolée par un jeune pharmacien allemand, Friederich Sertürner, en 1803.
L'acide salicylique ou salicyline est extrait en 1829 de l'écorce de saule (salix en latin) par Pierre-Joseph Leroux. L'utilisation de feuilles de saule était connue pour aider à guérir les fièvres, limiter les maux de tête. Elle était mentionnée dans le papyrus égyptien découvert par Ebers. L'identification du principe actif, sa caractérisation et sa production rationnelle permettent d'avoir une préparation efficace d'un médicament dont l'activité ne dépend pas de la personne qui récolte les feuilles ni de la saison.
En 1853, Charles Gerhardt, brillant chimiste strasbourgeois (1816-1856), réussit la synthèse de l'acide acétylsalicylique et dépose un brevet. En vingt ans, il va aussi introduire en chimie la notion de fonction chimique utilisée pour classer les produits chimiques. Son décès prématuré plonge son travail dans l'oubli pendant de nombreuses années.
En 1897, Félix Hoffmann de la société Bayer reprend les travaux de Gerhardt et réalise la synthèse industrielle. La commercialisation de l'aspirine par Bayer débute en 1899. L'exportation de l'aspirine avant la première guerre mondiale a été le début florissant de cette société allemande. À l'occasion du traité de Versailles le gouvernement français a exigé que le brevet de l'aspirine passe dans le domaine public. Elle a ainsi été fabriquée à Lyon dans les usines du Rhône qui donneront naissance avec les usines Poulenc de Vitry à Rhône-Poulenc, société qui a largement contribué au développement de l'industrie pharmaceutique française au XXème siècle.
Au début du XIXème siècle, les chimistes sont capables d'identifier et de synthétiser des produits à partir de produits naturels. Au milieu du siècle, 1850-1860, l'association de la chimie des colorants à la chimie des produits naturels va conduire à la naissance de l'industrie pharmaceutique moderne.
Les trente dernières années du XIXème siècle vont voir l'épanouissement de la microbiologie qui fera le lien entre les bactéries pathogènes et les infections. Le microscope avec l'observation directe des micro-organismes permet de battre en brèche la théorie de la génération spontanée des microbes. Le développement conjoint de la microbiologie et de la chimie va permettre la création de merveilleux médicaments. La notion d'agent pathogène existait au début du XIXème siècle puisque Larrey, célèbre chirurgien des armées napoléoniennes, évitait les infections lors des amputations sur les champs de bataille en utilisant de l'alcool, du vinaigre, et un peu le fer rouge.
Louis Pasteur (1822-1895) et Robert Koch (1843-1910) sont les deux figures marquantes de la microbiologie en France et en Allemagne. En une trentaine d'année, ils vont permettre l'identification des agents pathogènes, virus ou bactéries, responsables des maladies suivantes : rage, peste, choléra, typhoïde, méningite, diphtérie, tuberculose, syphilis, tétanos, botulisme, lèpre, ...
La connaissance de l'agent pathogène va conduire à la mise en place de règles d'hygiène rationnelles et la mise au point de vaccins, d'antibactériens et d'antiviraux. Le respect des règles d'hygiène pasteurienne dans les salles d'accouchement a permis de diviser par trois à quatre la mortalité infantile.
Les premiers médicaments obtenus par synthèse chimique apparaissent avec l'essor de la chimie industrielle à la fin du XIXème siècle. Paul Erlich comprend qu'il est possible d'associer des petites molécules chimiques pour lutter contre un certain nombre d'agents pathogènes. Il s'intéresse aux dérivés de l'arsenic. Il crée le Salvarsan, le premier médicament qui lutte contre la maladie du sommeil.
Le premier antibactérien date de 1933. Gerhardt Domagk va tester des milliers de molécules de l'IG Farben entre 1927 et 1930 sur des streptocoques. Ce travail le conduit aux sulfamides, dont le dérivé azoïque le Prontosil, et aux acridines. Le premier sulfamide de l'histoire du médicament est une étape essentielle puisqu'il marque la découverte de la notion de métabolite actif et de la mise en évidence de son mécanisme d'action. Il comprend la notion de métabolite actif, le fait, qu'entre le produit qui est absorbé et le produit qui va agir sur sa cible pharmacologique, il y a une transformation par l'organisme. En 1935-1938, les époux Tréfouël de l'Institut Pasteur montrent que l'activité antibactérienne est permise par la coupure de la molécule au niveau d'une double liaison azote-azote qui donne une amine aromatique qui est le produit actif.
Plusieurs questions restaient encore en suspens : pourquoi une molécule a-t-elle une activité pharmacologique ? Quelle est sa cible ? Comment cette molécule interagit-elle avec la cible ? En 1940, Woods de l'université d'Oxford montre que le métabolite du Prontosil est un inhibiteur de la synthèse d'une enzyme, le tétrahydrofolate, qui est impliqué dans les transferts d'enchaînement en C1 dans des étapes de biosynthèse de la bactérie. Cette inhibition chez l'homme est compensée par l'apport d'acide folique par l'alimentation.
Pour développer des médicaments, il faut absolument comprendre comment la molécule ingérée va être transformée et quel est son mécanisme d'action.
La mise sur le marché américain du Prontosil conduit à un drame. La première formulation du médicament aux Etats-Unis va se faire avec de l'éthylène glycol ou antigel comme excipient, conduisant au décès de 76 personnes. Les autorités fédérales américaines réagissent immédiatement en créant la Food and Drug Administration (FDA) qui va édicter des règles strictes sur l'évaluation pré-clinique et clinique des futurs médicaments. Après un certain empirisme des bonnes pratiques sont mises en place et les procédures de fabrication bien plus encadrées au point de vue scientifique.
En 1930, Flemming identifie à partir d'un champignon un produit capable de tuer les bactéries, c'est la pénicilline. Il faudra attendre la deuxième guerre mondiale et l'effort de guerre des américains pour avoir une production industrielle de la pénicilline. Cette production en masse en 1942-1943 a nécessité la mobilisation de plus de mille scientifiques de très haut niveau pour résoudre les problèmes posés par la fermentation, l'extraction et la purification par des méthodes chimiques industrielles à très grande échelle. L'un des précurseurs chimiques de la pénicilline, le précurseur des céphalosporines est produit actuellement à raison de 45 000 tonnes par an dans d'immenses cuves de fermentation d'une dizaine de mètres cubes.
Pendant une centaine d'années, de la fin du XIXème jusqu'aux années 1980, les seuls outils thérapeutiques ont été les vaccins et des petites molécules. Pasteur a préparé son vaccin contre la rage à partir de la moelle épinière de lapins infectés. À sa suite, de grands succès sont obtenus par les vaccins dans la lutte contre la diphtérie, le tétanos, la poliomyélite, la variole, les hépatites A et B, la grippe, ... Les petites molécules utilisées dans les centaines de nouveaux médicaments développés à cette période sont alors des produits naturels, le plus souvent extraits de végétaux, ou bien des produits de synthèse chimique. Les découvertes étaient quasi-routinières au cours du XXème siècle et l'espérance de vie a augmenté.
À partir de 1970, la biologie devient véritablement moléculaire. Des outils créés par les physiciens dans les années 1930-1940, comme la diffraction des rayons X sur nano-cristaux, la résonance magnétique nucléaire, la spectrométrie de masse, sont utilisés par les chimistes pour étudier les petites molécules. Le perfectionnement de l'instrumentation va permettre d'utiliser ces techniques sur les macromolécules. Aux cours des années 1990-95, la facilité de résolution des structures d'enzymes est alors équivalente à celle d'une petite molécule chimique en 1970. Des milliers de structures de protéines ou d'acides nucléiques sont maintenant disponibles. La compréhension du vivant et la compréhension des produits chimiques deviennent équivalentes.
Il y a quarante ans, la découverte de la structure de l'hémoglobine a valu un prix Nobel à Max Perutz, de l'université de Cambridge. La structure de la pénicilline et de la vitamine B12 vaut un autre prix Nobel à Dorothy Hodgkin à Oxford, à peu près à la même époque. Maintenant, la publication de la structure d'une protéine se fait dans des journaux classiques et elle est directement archivée sur des banques de données. Les trente dernières années du XXème siècle ont vu une accélération extraordinaire de la connaissance moléculaire du domaine du vivant.
Les années 1965-1980 ont été celles de la découverte des outils pour étudier les gènes, notamment les enzymes de restrictions qui coupent les gènes et les ligases qui recollent les morceaux. De la compréhension du fonctionnement des gènes aux manipulations génétiques, il n'y a eu qu'un pas rapidement franchi. C'est le monde de la biotechnologie moderne où les choses ne sont plus laissées au hasard et où l'expérimentateur peut intervenir. Le séquençage des génomes, de l'homme comme des agents pathogènes, se systématise. La connaissance du génome des agents pathogènes, virus et bactéries, permet l'amélioration des outils de diagnostic et l'identification de nouvelles cibles thérapeutiques. La compréhension des maladies d'origine génétique ouvre la voie aux corrections des erreurs génétiques par la thérapie génique.
La connaissance du génome ouvre la voie à de nouvelles techniques. La génomique est l'accessibilité de la totalité de l'information génétique d'une espèce vivante. La protéomique est la possibilité d'exprimer toute protéine à partir du génome. La pharmacogénomique est la possibilité d'adapter un traitement thérapeutique selon le profil métabolique de chaque individu. Les connaissances sur la capacité des individus à métaboliser ou à ne pas métaboliser, sur leurs réactions vis-à-vis d'un médicament, permettent d'imaginer dans le futur de pouvoir adapter les posologies en fonction du patrimoine génétique de chacun. Quant à la robotique, elle permet à des mini-robots de paillasse de réaliser des milliers de molécules et d'essais biologiques in vitro. Ils atteignent rapidement leurs limites car ils produisent toujours les mêmes produits en utilisant les mêmes réactions avec une diversité structurale par trop limitée. De plus, les tests in vitro ne prennent pas en compte les problèmes de biodisponibilité, de pénétration et de passage de membrane.
Le rôle du chimiste dans l'innovation thérapeutique en ce début de XXIème siècle va être essentiel car il est formé et entraîné pour comprendre les choses au niveau moléculaire. Il pourra travailler avec des biochimistes, avec des spécialistes de biologie moléculaire, de biologie cellulaire, de toxicologie, de pharmacologie, de médecine clinique. Les raisonnements en termes moléculaires font tomber les barrières de spécialités ( au singulier dans le sens de barrières liées à la spécialité / au pluriel mais alors écrire barrière des spécialités) mais le champ des connaissances nécessaires pour aller d'un domaine à l'autre dépasse souvent les capacités individuelles. Le chimiste moderne doit maîtriser la chimie de base et plusieurs domaines de la biologie. La biochimie est devenue une partie intégrante de la chimie, de même que l'enzymologie moléculaire. Les biologistes et les médecins doivent également avoir des bases élémentaires solides en chimie thérapeutique et en pharmacologie. Il faut des médecins qui restent au pied du malade en ayant cette capacité à discuter avec d'autres médecins qui sont impliqués dans la recherche clinique, à la recherche de médicaments. Les numerus clausus doivent être révisés régulièrement de manière intelligente pour éviter de créer des pénuries de médecins praticiens, s'il s'agit des cliniciens sinon chercher un synonyme à pratiquant qui renvoie à religion voire le supprimer.
Les chimistes créatifs vont continuer à être des acteurs clés dans l'industrie pharmaceutique du futur. Le « rational drug design » est le développement de la création rationnelle de nouveaux pharmacophores. La compréhension au niveau moléculaire du monde du vivant conduit à la création d'objets chimiques parfaitement adaptés à une utilisation en tant qu'outils thérapeutiques.
La chimie des produits naturels va continuer à se développer car la nature est une source d'inspiration de nouvelles structures de haute diversité.
La chimie théorique, avec des ordinateurs de plus en plus puissants et mieux utilisés, va permettre de faire des prédictions de l'interaction de molécules avec des systèmes biologiques et des sites pharmacologiques.
Selon les étapes de la création et de développement d'un médicament, différents métiers interviennent successivement : les chimistes et les biologistes sont les plus impliqués dans les phases de découverte pré-clinique alors que les médecins prennent le relais en phase clinique. Dès les premiers essais cliniques, les statisticiens ont un rôle primordial de prédiction du rapport bénéfice/risque afin d'éviter, par exemple, d'attendre le traitement de dizaines de milliers de personnes pour identifier d'éventuels effets secondaires néfastes.
La diversification des outils dans l'arsenal thérapeutique du XXIème siècle est une combinaison de réalité, d'espoirs et de rêves. Les macromolécules biologiques, traitées comme des objets chimiques, font maintenant partie, et prendront une part de plus en plus importante dans l'arsenal thérapeutique du futur. L'hormone de croissance, l'érythropoïétine capable de stimuler la production de globules rouges, sont produites par génie génétique.
Les thérapies génique et cellulaire sont encore du domaine de l'espoir. La thérapie génique est l'utilisation de gènes ou de molécules capables de modifier l'expression génétique pour traiter des maladies d'origine génétique. La thérapie cellulaire est l'utilisation de cellules souches pour réparer des dégâts au sein de tissus et d'organes.
Pour favoriser l'innovation thérapeutique, il faut favoriser la créativité dans tous les domaines. Il faut, à la fois, des chercheurs de très grande qualité en recherche fondamentale et des chercheurs de très grande qualité en recherche appliquée. La recherche fondamentale est indispensable pour le développement des recherches appliquées, mais, il arrive parfois que des résultats soient appliqués avant la compréhension complète des processus scientifiques sous-jacents. Chaque génération a sa proportion de talent et je souhaite que beaucoup s'intéressent à la fois à la chimie et à la thérapie et contribuent dans le futur à la création de médicaments de plus en plus efficaces et de plus en plus sûrs.
[1] Transcription réalisée par Juliette Roussel
[2] M. Madella et al, J. Archaeolog. Sci. 29, 703-719 (2002)

 

VIDEO          CNRS           LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 

 

 
 
 
initiation musicale toulon  

RADIOTHÉRAPIE

 

Paris, 23 décembre 2013


De nouvelles perspectives en radiothérapie ?
Des radiothérapies ciblées et moins nocives pour les cellules saines ? Telles sont les perspectives ouvertes par les résultats obtenus par des chercheurs français du Laboratoire de chimie physique - matière et rayonnement (CNRS/UPMC), en collaboration avec des scientifiques allemands et américains (1). En effet, jusqu'à présent, la radiothérapie employée dans la lutte contre le cancer, utilise une large gamme d'énergie en irradiant les tissus biologiques. En étudiant sur le plan fondamental le comportement de molécules soumises à un rayonnement ayant une énergie finement choisie, les chercheurs ouvrent la perspective à des radiothérapies futures, réduisant la quantité de tissus environnants affectés ou dont la dose totale d'irradiation serait considérablement réduite. Ces travaux, dont les retombées en médecine pourraient être importantes viennent d'être publiés sur le site de la revue Nature et apportent un nouvel éclairage sur le comportement de la matière à l'échelle atomique.
La radiothérapie actuellement utilisée dans près de 50 % des traitements du cancer irradie les tissus biologiques avec un rayonnement situé sur une large gamme d'énergie afin de détruire les cellules cancéreuses. Les travaux de cette équipe internationale menée par deux chercheurs du CNRS, du Laboratoire de chimie physique - matière et rayonnement  (CNRS/UPMC) devraient permettre en ciblant plus finement la gamme d'énergie utilisée d'améliorer la précision et la qualité du traitement. Leurs recherches fondamentales à l'origine visaient à étudier le comportement de la matière à l'échelle atomique soumise à un rayonnement, ici de type rayon X, dont l'énergie est choisie de manière très précise. Lorsqu'un atome absorbe des rayons X d'une énergie donnée, un processus, appelé « relaxation coulombienne interatomique », se met en œuvre, provoquant l'émission d'électrons par un des atomes au sein d'une molécule. Dans leur expérimentation, les chercheurs ont montré qu'il est possible de produire une quantité importante d'électrons de basse énergie dans l'environnement immédiat de cet atome cible. On parle alors de phénomène de résonance. En quoi ces résultats peuvent-ils être intéressants pour la radiothérapie ? Dans un environnement vivant, ces électrons de basse énergie sont capables d'induire la rupture d'un double brin d'ADN voisin. Or, les cellules vivantes, dont les cancéreuses, n'ont en général que la capacité de réparer les dommages causés sur un seul brin d'ADN, mais pas lorsque ces dommages touchent le double brin. Par ce processus, on peut donc envisager de cibler les cellules cancéreuses pour les détruire.

L'irradiation de tissus biologiques en radiothérapie se faisant sur une large gamme d'énergie, l'avantage d'utiliser une radiation d'énergie finement choisie afin de provoquer une émission résonante des électrons est double : les rayons X pénètrent profondément dans les tissus mais seuls des atomes précis au sein de de molécules choisies, administrées préalablement de façon à cibler les cellules cancéreuses sont ainsi excités, et les tissus sains plus éloignés ne sont pas affectés par l'irradiation. De plus, l'excitation résonante est dix fois plus efficace que l'excitation non résonante produite par une irradiation moins spécifique. La dose totale d'irradiation peut ainsi être considérablement réduite.

Ces résultats ont pour l'instant été obtenus sur de petites molécules constituées de moins de cinq atomes. Les chercheurs proposent maintenant de tester ce processus de production d'électrons sur des molécules plus complexes, contenant plusieurs centaines, voire des milliers d'atomes comme les molécules constituant les cellules vivantes. À terme, le but est de produire de tels électrons, toxiques pour l'ADN, au sein de cellules cancéreuses. Pour ce faire, les chercheurs envisagent d'irradier les tissus avec des rayons X ayant l'énergie adaptée, après marquage des cellules cancéreuses par un atome-cible. 

 

DOCUMENT                  CNRS                  LIEN

 
 
 
initiation musicale toulon  

ROBOTIQUE DÉVELOPPEMENTALE

 

2013 - VISION ET REGARD - DU REGARD À L'INTERACTION : L'APPORT DE LA ROBOTIQUE DÉVELOPPEMENTALE

Phillippe Gaussier est professeur à l'université de cergy-Pontoise où il dirige un groupe de neurocybernétique au sein de l’UMR CNRS 8051.
Ses recherches utilisent les robots comme modèles et outils pour étudier la cohérence et la dynamique de différents modèles cognitifs (approche écologique et développementale de la cognition). Elles concernent d’une part la modélisation des mécanismes cognitifs impliqués dans la perception visuelle, la navigation, la sélection de l’action et d’autre part l’étude de la dynamique des interactions entre individus.
Philippe Gaussier a été membre de l’Institut Universitaire de France de 2005 à 2010.
Explorer et reconnaître une scène visuelle est une question complexe que la modélisation sur ordinateur et la robotique développementale éclairent aujourd’hui d’une lumière nouvelle. Des expériences robotiques font ressortir l’intérêt d’une exploration active de la scène visuelle et de sa caractérisation en tant que séquence ou chemin entre différentes vues locales. Nous montrerons, à partir de tâches de navigation visuelle, de reconnaissance d’expressions faciales, et de préhension d’objets, comment les informations sur le « quoi » et le « où » peuvent être intégrées pour développer des systèmes robotiques robustes, mais aussi pour questionner notre compréhension des mécanismes cognitifs. Dans le cadre d’une approchedéveloppementale, nous proposons que les capacités d’imitation émergent de l’ambigüité de la perception.L’apprentissage de tâches de plus en plus complexes peut être réalisé par une architecture couplant de manière très simple les informations sensorielles aux commandes motrices, mais il faut pour cela tenir compte des interactions interindividuelles, qui peuvent grandement simplifier les problèmes.

 

VIDEO             CANAL  U                LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante
 
 
 
Google