|
|
|
|
|
|
LES ACCÉLÉRATEURS DE PARTICULES |
|
|
|
|
|
LES ACCÉLÉRATEURS DE PARTICULES
A quoi sert un accélérateur de particules ?
De l’étude des constituants ultimes de la matière à la stérilisation dans l’industrie agroalimentaire en passant par l’étude des matériaux, … découvrez à quoi servent les accélérateurs de particules.
Depuis la conception technique d'un accélérateur dans les années 1920, les accélérateurs de particules se sont beaucoup développés et ont pris des tailles très diverses, de quelques mètres à quelques dizaines de kilomètres.
On peut classer les accélérateurs en deux grandes catégories :
* Linéaires, où le faisceau de particules traverse une seule fois l'accélérateur
* Circulaires, où le faisceau de particules repasse plusieurs fois par les mêmes sections.
Mais il existe beaucoup de sous-catégories selon les techniques d'accélération et il y a des variantes combinant différentes catégories. Les grands centres d'accélérateurs utilisent souvent une suite d'accélérateurs de différents types.
On peut classer les accélérateurs selon leurs utilisations, ce qui correspond d'ailleurs aussi à peu près à leur développement historique.
LES UTILISATIONS DES ACCÉLÉRATEURS DE PARTICULES
Etudier la matière et explorer l’atome
grâce aux collisions de particules
L'objectif premier d'un accélérateur est de communiquer de l’énergie à des particules et de provoquer leurs collisions afin d'étudier leurs natures et leurs propriétés. C'est l'étude des constituants élémentaires de la matière.
Pour comprendre un objet complexe (la matière, sa nature, ses propriétés, son origine), les chercheurs l'analysent, c’est-à-dire le découpent en petits morceaux plus simples à étudier, avec l'espoir de pouvoir ensuite comprendre l'ensemble.
Le plus grand accélérateur de particules au monde servant cet objectif de recherche fondamentale est le LHC au CERN (Suisse). C'est un accélérateur circulaire de 27 km de circonférence, lui-même alimenté en particules (protons ou ions de plomb) par toute une série d'accélérateurs linéaires et circulaires.
Il existe aussi des accélérateurs linéaires qui servent à faire collisionner les particules comme le SLAC à Stanford (Etats-Unis) de 3 km de longueur, ou le projet international ILC de 30 km de longueur.
Les communautés d'utilisateurs sont essentiellement les physiciens nucléaires (étude du noyau atomique) et les physiciens des particules (étude des constituants du noyau).
Par ailleurs, en France, depuis 1983, les physiciens disposent du Grand accélérateur national d'ions lourds, le Ganil. Cet accélérateur d’ions, reconnu Grande installation européenne depuis 1995, est un équipement commun au CEA et au CNRS dédié aux recherches fondamentales et appliquées en physique nucléaire, en physique atomique et des matériaux. Chaque année, plus de 700 physiciens y sont accueillis pour étudier l’atome et son noyau, dont près de 300 chercheurs étrangers (en majorité européens). Grâce au Ganil, les chercheurs ont fait de nombreuses avancées et découvertes sur la structure du noyau de l'atome, ses propriétés et l’interaction d’ions lourds avec la matière.
Spiral2 (Système de Production d’Ions Radioactifs Accélérés en Ligne) produira et accélèrera dès 2016 des faisceaux d’ions stables parmi les plus intenses du monde. Ils permettront de mener des études jusqu’alors impossibles, ouvrant ainsi de nouveaux horizons à la physique du noyau, dans la continuité des expériences réalisées au Ganil depuis plus de 30 ans. Spiral2 donnera à la France et à l’Europe une réelle avance technologique et scientifique.
Les noyaux exotiques, la spécialité du Ganil
La « spécialité » du Ganil est la production et l’étude des noyaux exotiques. Inexistants sur Terre, ces noyaux qui comportent des proportions anormales de neutrons, représentent près de 90 % des noyaux présents dans l’Univers. Ces noyaux intéressent tout particulièrement les physiciens car leur structure est bien différente de celle des noyaux classiques. En forme de poire, de cacahuète ou de soucoupe volante, … ils bousculent les représentations. Leur étude est essentielle dans de nombreux domaines de la physique nucléaire. Elle permet entre autres de tester les modèles théoriques sur la cohésion du noyau, mais aussi de l’astrophysique, notamment pour comprendre la formation des noyaux des atomes au sein des étoiles. Les noyaux exotiques se révèlent être une véritable mine d’informations (propriétés nouvelles, cohésion accrue, déformations insoupçonnées,…), remettant en cause les connaissances sur le noyau atomique.
* Pour en savoir plus sur le Ganil, consultez la chaîne vidéo dédiée.
Sonder les matériaux en produisant
un rayonnement synchrotron
En voulant étudier la matière de plus en plus profondément, on a besoin d’énergies de plus en plus élevées. Lorsque les trajectoires des particules sont courbées, celles-ci émettent de l'énergie sous forme de lumière appelée rayonnement synchrotron. C'est un phénomène parasite non voulu car l’énergie perdue l’est au détriment de celle de l’accélération. Mais les chercheurs se sont vite rendus compte que ce rayonnement est très directionnel (un peu comme un laser), très puissant, jusqu'à 10 000 fois plus brillant que la lumière solaire, avec un spectre de couleurs très riche, des rayons X jusqu'à l'infrarouge. Ce rayonnement synchrotron peut donc être utilisé comme un microscope, à la fois puissant et souple, pour sonder et analyser des matériaux aussi divers que les cristaux, les semi-conducteurs, le béton, les cellules vivantes ou les œuvres d'art.
Le synchrotron
Schéma de principe du synchrotron : Les équipements de base de SOLEIL sont l’accélérateur linéaire, le booster et l’anneau de stockage. Le rayonnement synchrotron est dirigé par des systèmes optiques vers les stations expérimentales. Chaque ligne de lumière constitue un véritable laboratoire de biologie, chimie, sciences de la Terre… © Synchrotron SOLEIL – EPSIM – Jean-François Santarelli
Les accélérateurs spécialement optimisés pour produire le rayonnement synchrotron ont donc été conçus dès les années 1960. Ils sont utilisés par une très large communauté venant de différents domaines, scientifiques (physique, chimie, biologie, etc.) ou techniques (matériaux, œuvres d'art, etc.). De ce fait, ces accélérateurs sont parmi les plus répandus dans le monde. En France, le synchrotron SOLEIL, sur le plateau de Saclay, ou encore l’ESRF à Grenoble relèvent de cette catégorie d’accélérateurs.
Production de rayonnement synchrotron-E-XFEL
Depuis peu, la communauté scientifique s'intéresse aux accélérateurs linéaires produisant des flash de lumière synchrotron ultracourts et auto-amplifiés comme E-XFEL (European X-ray Free Electron Laser) en cours de construction à Hambourg, Allemagne, qui fera 3 km de long. Ici, les trajectoires des électrons sont courbées de façon répétée sur des périodes de l'ordre du centimètre, de telle manière que la lumière émise s'auto-amplifie.
Irradier les matériaux, stériliser et guérir
Avec le développement d’accélérateurs de plus en plus performants et fiables, fournissant des faisceaux de particules avec des propriétés pratiquement à la demande, il est désormais possible de les utiliser pour irradier des cibles de toute nature.
La cible peut être une tumeur maligne à traiter (secteur médical), un aliment à stériliser (secteur sécurité alimentaire), ou encore une cible de spallation destinée à produire des neutrons (secteur recherche scientifique) comme ESS, European Spallation Source, à Lund, Suède. Pour chaque type d'utilisation, il y a donc un accélérateur ou un type d'accélérateur dédié.
DOCUMENT cea LIEN |
|
|
|
|
|
|
L’ESSENTIEL SUR... Les noyaux des atomes |
|
|
|
|
|
L’ESSENTIEL SUR...
Les noyaux des atomes
Publié le 3 novembre 2016
La conception que se font les physiciens des noyaux des atomes et de la physique qui les gouverne a fortement évolué depuis le début du XXème siècle. On les classe sur un diagramme en fonction de leur nombre de protons et de neutrons appelé charte des noyaux. Dans ce diagramme, la « vallée de la stabilité » délimite la zone des noyaux existants.
A L’INTÉRIEUR DE L’ATOME
L’atome est le constituant de base de la matière. Dans le noyau de l’atome se trouvent les protons (chargés positivement) et les neutrons (non chargés), tandis que les électrons (chargés négativement) sont localisés autour du noyau.
Son nombre de protons ou numéro atomique est noté Z. L’atome étant neutre, il comporte autant d’électrons que de protons. Ainsi le numéro atomique détermine les propriétés chimiques de l’atome.
A chaque valeur de Z correspond un nom d’atome, un élément chimique. Ainsi l’hydrogène possède 1 proton, tandis que le carbone en possède 6.
Le nombre de neutrons au sein du noyau est désigné N. Le nombre de masse A est la somme de Z+N. Pour un atome de Z donné, on peut compter plusieurs isotopes, en fonction du nombre de neutrons.
L’aluminium possède 13 protons (Z=13) et son seul isotope stable possède 14 neutrons (A = 14+13 = 27) © Yuvanoé/CEA
DES NOYAUX DANS TOUS LEURS ÉTATS
Un noyau d’atome est dit :
* lié lorsque la cohésion des protons et des neutrons est assurée. Plus leur énergie de cohésion est élevée, plus il faudra fournir d’énergie pour séparer les constituants du noyau. Les noyaux liés peuvent être stables ou instables.
* stable lorsqu’il ne se désintègre pas spontanément en un autre noyau. La majorité des noyaux que l’on trouve sur Terre sont stables.
* instable ou radioactif lorsqu’il tend à se transformer spontanément en un autre noyau. On appelle cette transformation « désintégration radioactive ». La probabilité que cet événement survienne dépend de sa période radioactive, qui correspond au temps au bout duquel la moitié d’un ensemble de noyaux de même nature s’est désintégrée.
* excité lorsque, stable ou instable, il a acquis un surplus d’énergie. Le noyau peut vibrer ou tourner sur lui même et /ou dissiper cette énergie excédentaire par émission d’une particule ou d’un photon.
*
DES NOYAUX EN FORME
Dès les origines de la physique nucléaire, devant la complexité d'un système composé de N particules en interaction, les physiciens imaginent des modèles visant à donner une description simple mais suffisamment réaliste du noyau. Depuis les années 60 les physiciens constatent que le noyau des atomes peut prendre les formes les plus inattendues. La forme d’un noyau correspond à la zone dans laquelle ses constituants élémentaires peuvent se trouver. Ces constituants élémentaires sont les protons et les neutrons, qu’on nomme ensemble les nucléons, liés par l’interaction forte, l’une des quatre forces fondamentales à l’œuvre dans l’Univers. Ils sont eux-mêmes composés de quarks et de gluons (également soumis à l’interaction forte).
Jusqu’au 19e siècle, l’atome est considéré comme la brique de base de la matière, indivisible. A partir du 20e siècle, la physique permet aux scientifiques de rentrer dans l’intimité de l’atome.
Voici les principales phases de la transformation de notre vision du noyau :
* 1911-1919 : On voit l’atome comme un noyau composé de protons chargés positivement autour duquel gravitent les électrons ;
* 1932 : Le noyau compte aussi des neutrons ;
* 1934 : Synthèse d’un atome artificiel. C’est le premier noyau exotique. Casse tête des physiciens tant leurs propriétés sont variées (forme, mode de désintégration radioactive, composition, durée de vie tellement courte que la notion même d’existence semble dépassée…), les noyaux exotiques continuent d’être étudiés aujourd’hui : il en resterait, selon les modèles théoriques, 3 000 à 5 000 à découvrir.
* Années 40 : Certaines combinaisons particulières de protons et de neutrons entraînent des noyaux ayant une énergie de liaison très élevée. Les physiciens les appellent les noyaux magiques. C’est le cas pour les noyaux qui comptent 2, 8, 20, 28, 50, 82 ou 126 protons et/ou neutrons. A la même époque, le noyau peut être décrit macroscopiquement comme une goutte de matière. C’est le modèle de la goutte liquide qui permet de calculer l’énergie de liaison du noyau grâce à une seule équation simple.
* Années 50 : On pense que les nucléons sont organisés en niveaux d’énergies qu’on appelle couches nucléaires, similaires à celles des électrons autour du noyau. C’est le modèle en couches : chaque couche a un nombre fini d’emplacements, lorsqu’une couche est totalement remplie et qu’aucune n’est remplie partiellement, l’édifice est particulièrement robuste.
* Années 70 : La théorie du champ moyen considère que chaque nucléon se déplace dans un puits de potentiel, généré par l’ensemble des autres nucléons, qui le confine dans le noyau.
* Années 80 : les noyaux ne sont plus vus comme un mélange homogène et plus ou moins sphérique. Ils sont imaginés comme des structures très variées : ainsi le carbone 12, atome stable, porté à haute énergie, est vu comme un tripode de trois noyaux d’hélium ; Le lithium 11 fait partie d’une nouvelle famille de noyaux dits noyaux à halo : son extension spatiale est similaire à celle du plomb 208, qui comporte pourtant vingt fois plus de nucléons.
* Années 90 : A quelques encablures de la vallée de la stabilité, la théorie prévoit l’existence d’une série de noyaux comportant plus de 110 protons dont la durée de vie serait relativement élevée. Les scientifiques parlent de l’îlot de stabilité des noyaux super-lourds. Cette relative stabilité des noyaux super-lourds va à l’encontre de la force de répulsion coulombienne qui tend à faire se disloquer un édifice composé d’un trop grand nombre de charges de même signe.
* Années 2000 : Avec la montée en puissance des grands accélérateurs de faisceaux radioactifs (Spiral au Ganil, RIBF à Riken…) de nombreux nouveaux isotopes radioactifs sont découverts et étudiés.
* Aujourd’hui, tous les éléments jusqu’à 118 protons ont été synthétisés. Les quatre derniers découverts (113, 115, 117 et 118 protons) ont été officiellement nommés en 2016. De nouveaux instruments sont en développement pour aller encore plus loin. Les noyaux exotiques très riches en neutrons produits lors des explosions de supernovae sont encore hors de notre portée. On est encore très loin d’avoir découvert tous les noyaux existants et les phénomènes surprenants qu’ils pourraient faire apparaître !
LA VALLÉE DE LA STABILITÉ
Lorsqu’on classe les noyaux connus des atomes en fonction de leur nombre de protons (Z, éléments) et de neutrons (N, isotopes), on obtient un ensemble de données en forme de faisceau. Si on ajoute la valeur de l’énergie de liaison de chaque noyau sous la forme d’un histogramme, on obtient un graphe en trois dimensions qui présente une surprenante vallée au fond de laquelle se trouvent les 250 à 300 atomes stables. Plus on s’éloigne de ces noyaux, plus l’énergie de liaison de nucléons dans le noyau est faible. Les atomes radioactifs subissent une série de transformations qui les ramène toujours vers le fond de ladite vallée. Les chercheurs désignent cette figure par le terme imagé de « vallée de la stabilité ».
D’OU VIENNENT LES NOYAUX :
LA NUCLÉOSYNTHÈSE DANS LES ÉTOILES
Les éléments qui constituent la matière sont apparus à différentes étapes de l’histoire de l’univers. Les atomes les plus légers sont les plus anciens : hydrogène, hélium, lithium et béryllium ont été formés par assemblage de protons et de neutrons dans les trois minutes suivant le Big Bang. Il y a entre douze et quinze milliards d’années. Les autres éléments, plus lourds, sont plus récents et ont été produits dans les étoiles. Les premiers atomes compris entre le carbone et le fer ont été synthétisés lors de la fin de vie d’étoiles près de dix fois plus massives que notre Soleil. Au delà du cobalt, les noyaux sont synthétisés lors de réactions explosives telles que les supernovas. On ne connaît pas encore précisément tous les processus responsables de la création des atomes dans l’Univers.
DOCUMENT cea LIEN |
|
|
|
|
|
|
Technologies pour l'information et la communication |
|
|
|
|
|
Technologies pour l'information et la communication
Spintronique, photonique, électronique moléculaire… autant de technologies à l’étude pour miniaturiser davantage les transistors.
Publié le 1 juillet 2012
Les technologies pour l’information et la communication recourent comme matériau de base aux nanocomposants. Ceux-ci sont fabriqués de deux manières.
* La voie descendante, ou top-down, permet de réduire le plus possible les dimensions du composant que l’on veut fabriquer. C’est la voie suivie par l’électronique depuis quarante ans. L’exemple le plus remarquable en est le circuit intégré sur puce.
* La voie ascendante, ou bottom-up, permet de construire des molécules ou des assemblages atomiques complexes, intégrés ensuite dans de plus grands systèmes. Elle vise à fabriquer plus petit, moins cher et avec une qualité accrue. C’est l’une des voies d’avenir à plus ou moins long terme pour dépasser les limitations de la loi de Moore.
L’ÉVOLUTION DE LA MICROÉLECTRONIQUE
Le silicium, matériau de base de toute l’industrie électronique, est un élément abondant, puisqu’il est extrait du sable par purification (94 % de la croûte terrestre est composée de silice !). Il est cristallisé sous la forme de barreaux de 20 à 30 cm de diamètre, lesquels seront découpés en tranches de moins d’un millimètre d’épaisseur. Sur ces tranches sont fabriquées en même temps des centaines de puces, par photolithographie. Celle-ci consiste à reproduire, dans une résine photosensible, le dessin des circuits à réaliser, à l’image de pochoirs que l’on pourrait superposer pour obtenir des circuits de plus en plus complexes.
Ces motifs compliqués sont générés en une seule exposition. Les détails sont imprimés sur le substrat quand la lumière passe à travers les ouvertures d’un masque, définissant d’une manière précise et reproductible des millions de transistors. Les traits les plus fins obtenus aujourd’hui industriellement ont une épaisseur de 45 nanomètres, ce qui permet de disposer et de connecter des millions de composants de base – les transistors – par circuit et de multiplier ainsi les fonctionnalités. Cette technique de photolithographie est limitée par les phénomènes de diffraction et de longueur d’onde du faisceau de lumière utilisé. Des améliorations sont en cours de test pour augmenter la précision. Par exemple, la longueur d’onde des lumières utilisées à travers les pochoirs a été diminuée pour descendre du bleu au bleu profond puis à l’ultraviolet.
Mais de nouvelles lentilles doivent être mises au point pour focaliser cette lumière de plus en plus énergétique. La résolution spatiale a été doublée en tirant parti du caractère ondulatoire de la lumière et du principe d’interférence. Le renforcement sélectif des ondes lumineuses mène à une exposition accrue de la résine photosensible, tandis que leur annulation laisse des structures dans l’obscurité. On peut également graver des motifs sur les puces au moyen de faisceaux d’électrons, mais les dessins doivent alors être tracés les uns après les autres. La lithographie à faisceau d’électrons (e-beam) permet d’atteindre une résolution nanométrique, car la longueur d’onde des électrons est de l’ordre de quelques nanomètres. C’est idéal pour produire le pochoir initial qui sera réutilisé des milliers de fois en lithographie optique, ou pour la fabrication de circuits expérimentaux en laboratoire… mais pas pour la production en masse de puces.
La photolithographie atteindra ses limites techniques lorsque les détails les plus fins mesureront de 10 à 20 nm, ce qui devrait arriver à l’horizon de 2015. À cette échelle, des effets dus à la physique quantique se manifesteront et perturberont le fonctionnement des circuits ; par exemple, des électrons pourront sauter d’un « fil » à l’autre par effet tunnel (voir la page “La physique quantique”). Outre les limites physiques, les investissements nécessaires pour construire des usines capables de graver des circuits aussi fins deviendront prohibitifs (estimés aujourd’hui à plus de 5 milliards d’euros). La voie top-down, qui aura poussé jusqu’à l’extrême la miniaturisation du transistor MOS (Metal oxide semiconductor), devrait atteindre ses limites vers 2020.
Un changement de technologie devrait alors s’imposer : ce sera le début de la véritable nanoélectronique, qui prendra en compte les propriétés de la matière à cette échelle. Les composants de base ne seront plus les mêmes.
COMMENT REPOUSSER LES LIMITES DE LA LOI DE MOORE ?
Plusieurs options sont possibles pour prolonger la voie de la miniaturisation, dont voici deux exemples.
La spintronique réalise le mariage entre l’électronique et le magnétisme. Alors que l’électronique actuelle est entièrement basée sur la manipulation de la charge électrique portée par les électrons, la spintronique utilise leur spin. Les électrons ont trois particularités physiques : leur masse, leur charge et leur spin. Pour cette dernière caractéristique intrinsèque, tout se passe comme si le moment magnétique de l’électron s’apparentait au sens de rotation interne de celui-ci autour d’un axe fixe imaginaire. Pour les électrons, le spin ne peut prendre que deux valeurs : +1/2 spin dit « up » ou -1/2 spin dit « down », correspondant ainsi au fait qu’il ne peut tourner que dans un sens ou dans l’autre. On peut utiliser cette propriété pour obtenir des fonctionnalités nouvelles, par exemple pour coder, traiter ou transmettre une information.
Focus sur Minatec
Pôle d’excellence européen en micro et nanotechnologies.
Autour de l’Institut Léti* du CEA est organisé un campus regroupant institutions universitaires et entreprises privées. Officiellement inauguré en juin 2006 et situé à Grenoble, Minatec met à leur disposition des salles blanches et une plateforme de nanocaractérisation unique en Europe, pour un investissement d’un milliard d’euros sur dix ans.
* Laboratoire d’électronique et des technologies de l’information.
Une grande variété de dispositifs innovants utilisant le spin des électrons peut être réalisée. Ces dispositifs combinent des matériaux magnétiques qui servent de polariseur ou analyseur en spin et des matériaux conducteurs, isolants ou semiconducteurs.
Des dispositifs spintroniques sont déjà utilisés dans les disques durs d’ordinateur. Il s’agit de capteurs dont la résistance électrique varie en fonction du champ magnétique appliqué. Ils permettent de relire l’information magnétique enregistrée sur le disque magnétique. La spintronique permet d’envisager de pousser la capacité de stockage sur les disques durs au-delà du térabit (1015 bits) par pouce carré, c’est-à-dire 155 milliards de bits/cm2.
D’autres applications industrielles sont en train de voir le jour. Ainsi, des mémoires magnétiques peuvent être réalisées sans aucune pièce mobile (contrairement aux disques durs). Ces mémoires sont formées d’un réseau de piliers magnétiques de dimension nanométrique, eux-mêmes constitués de couches magnétiques dont le sens de l’aimantation (+1/2 ou -1/2) détermine l’état du bit (respectivement 0 ou 1). Non seulement ces mémoires vives ne disparaissent pas en cas de coupure d’alimentation (non-volatilité), mais elles sont très rapides (écriture et lecture ne durent que quelques nanosecondes) et sont insensibles aux rayonnements ionisants. Elles permettent de concevoir des ordinateurs que l’on pourrait éteindre et allumer instantanément en gardant toute l’information à l’écran. D’autres applications sont en cours de développement pour la réalisation de composants radiofréquence pour les télécommunications et les réseaux sans fil.
La photonique utilise la lumière pour coder l’information. Tous les systèmes actuels (une puce d’ordinateur, un circuit intégré, un transistor) sont basés sur le transport, le confinement et les propriétés physiques de l’électron. Mais si, pour aller plus vite, il était remplacé par le photon ? Celui-ci, outre qu’il se déplace à la vitesse de la lumière (300 000 km/s), provoque peu de dissipation de chaleur lors de son déplacement.
Mais, avant d’employer les photons comme moyen de codage d’information dans une puce, il faut mettre au point tous les composants de la chaîne, de l’émetteur au récepteur, en passant par les guides et les modulateurs. Le silicium, vedette de la microélectronique, est une piètre source de lumière… à l’état macroscopique. La solution est venue de la nanostructuration : soumis aux lois étranges du monde quantique, un cristal de silicium, réduit à une dizaine de nanomètres, voit ses performances d’émission fortement modifiées ! Pour guider ces photons, pas question d’utiliser des fibres optiques ou des miroirs aux dimensions millimétriques, mais un dispositif bien plus efficace : le cristal photonique. Constitués en perçant de minuscules trous de manière périodique dans un semi-conducteur, ces cristaux réfléchissent et dirigent la lumière. Ils peuvent aussi la filtrer, en agissant sur des longueurs d’onde particulières et permettent de la confiner dans un volume extrêmement faible (quelques centaines de nm). La modulation, le multiplexage et le décodage des signaux sont les trois domaines où de nombreux progrès sont en cours pour aller vers l’ordinateur à photons. C’est cette possibilité de multiplexage qui, en permettant les calculs parallèles, représente le « plus » de l’ordinateur photonique.
Des mémoires vives persistantes et rapides grâce à la spintronique.
Le photon, qui se déplace à la vitesse
de la lumière, pourrait remplacer l’électron
pour coder les informations dans une puce.
Graphène et nanotube de carbone
En chimie et en science des matériaux, l'allotropie est la propriété de certains corps simples d'exister sous plusieurs formes cristallines ou moléculaires. Par exemple le carbone, qui apparaît sous une forme non structurée : la mine de crayon, ou structurée: le diamant. La mine de crayon est composée d’un empilement de feuillets monoatomiques d’atomes de carbone disposés en hexagones. Si l’on isole un seul feuillet de la structure, on obtient du graphène, qui présente des propriétés de transport électronique remarquables. Si l’on enroule ce feuillet sur lui-même, il peut prendre la forme d’un nanotube. Le nanotube a des propriétés mécaniques et électriques surprenantes qui promettent des applications nombreuses et une industrialisation dans un avenir proche :
- Le nanotube est 100 fois plus résistant et 6 fois plus léger que l’acier. Il peut donc être utilisé pour fabriquer des matériaux composites hautes performances et remplacer les traditionnelles fibres de carbone: raquettes de tennis ou clubs de golf sont des exemples d’applications grand public.
- En fonction de l’angle d’enroulement du feuillet de graphite, le nanotube est soit un excellent conducteur d’électricité, soit un semi-conducteur. Les conducteurs pourront être utilisés dans la fabrication de nanofils électriques, ou comme nano-électrodes dans les écrans plats de télévision ou d’ordinateur. Un nanotube semi-conducteur et un conducteur assemblés pourront être utilisés comme éléments de base pour fabriquer des composants électroniques nanométriques.
LA DÉMARCHE BOTTOM-UP À PARTIR DE NANOCOMPOSANTS
Cette nouvelle approche est envisageable pour surmonter les obstacles de la miniaturisation. Elle fait appel à des connaissances fondamentales de physique et de chimie et permet de concevoir les composants entièrement nouveaux de l’électronique moléculaire.
Si la fabrication atome par atome de nanocomposants est possible, elle est inenvisageable industriellement sans la maîtrise de procédés d’auto-assemblage de la matière, car elle prendrait un temps infini. À défaut de construire un circuit et ses nanocomposants, ce qui serait trop long et trop cher, les chercheurs envisagent la conception d’entités moléculaires dotées de fonctions électroniques capables de s’organiser seules. Pour les fabriquer, ils disposent de quatre briques de base : les molécules de synthèse, faciles à obtenir, les biomolécules comme l’ADN, les nanoparticules métalliques ou semi-conductrices et les nanotubes de carbone. Mais la voie de l’auto-assemblage est difficile : il faut réussir à contrôler le positionnement des briques.
Des charges positives et négatives s’attirent : si l’on ajoute des molécules chargées négativement à la surface d’un wafer, elles vont attirer les molécules chargées positivement greffées à la surface de nanotubes, créant ainsi des nanocomposants. Reste à résoudre le problème des jonctions entre ces composants et le reste du circuit ; faute de quoi, l’électronique moléculaire en restera là, malgré des perspectives très séduisantes.
Lorsque l’on applique une tension déterminée sur la grille, un électron peut entrer dans « l’île de Coulomb » tandis qu’un autre en sort. Il s’établit dans le transistor un courant dont l’intensité dépend du nombre d’électrons présents dans l’île. © Yuvanoé/CEA
En 1974, la première diode moléculaire a été réalisée sur une couche de molécules individuelles. Non plus faite en silicium, elle a été obtenue par la mise en contact de deux morceaux de semi-conducteurs : l’un des matériaux comporte de nombreux électrons, alors que le deuxième en est extrêmement pauvre. Des molécules qui présentent cette même asymétrie ont ensuite été conçues ; puis un transistor dans lequel le canal était formé d’une de ces molécules.
Ce dispositif a donné des preuves flagrantes du comportement quantique des électrons.
On peut aussi concevoir un transistor à un seul électron. Le principe consiste à ajouter un espace en matériau semi-conducteur entre la source et le drain du transistor, où seul un nombre déterminé d’électrons peut s’accumuler. Quand une tension électrique est appliquée entre la source et le drain, l’espace se remplit, puis le courant ne passe plus (phénomène de blocage de Coulomb). Lorsque l’on applique une tension sur la grille du transistor, un nouvel électron peut entrer, tandis qu’un autre sort de cet espace. Ainsi, en modifiant la tension de grille, on réalise de l’électronique à un seul électron.
DOCUMENT cea LIEN
|
|
|
|
|
|
|
La microélectronique : de plus en plus d'applications |
|
|
|
|
|
La microélectronique : de plus en plus d'applications
Téléphones mobiles, appareils photo numériques, micro-ordinateurs, consoles de jeux, cartes bancaires, GPS, automobiles : en quelques décennies, les circuits intégrés ont conquis la plupart de nos objets quotidiens.
Publié le 18 octobre 2018
Au CEA, les chercheurs développent des composants de base de plus en plus petits. Ils savent ensuite construire des capteurs complets, des circuits intégrés, prévoir des architectures spécifiques, en assurer l'intégration 3D et le packaging, leur associer de l'électronique de puissance, des éléments d'imagerie et des algorithmes de fusion de données… allant jusqu'au stade de pré-industrialisation. Ils continuent aussi d'étudier l'ingénierie des matériaux, à l'origine de nouvelles fonctions.
Cette pluridisciplinarité profite à de nouveaux axes de R&D : l'intelligence artificielle, la réalité virtuelle et la réalité augmentée, les protocoles médicaux, la cybersécurité. Une meilleure connectivité, une bonne autonomie énergétique et la garantie de la sécurité des données et des calculs révolutionnent les domaines de la santé, de l'environnement et de l'énergie.
Informatique
Les composants microélectroniques constituent le « socle » physique (hardware) sur lequel fonctionnent toutes les applications informatiques (software). L'évolution accélérée des capacités de traitement et de stockage des informations numériques, associée aux progrès des langages de programmation et des codes de calcul, a favorisé le développement d'applications logicielles de plus en plus complexes, capables de manipuler d'abord uniquement du texte, puis des images, des vidéos... La révolution actuelle du « Big Data », qui manipule d'énormes quantités de données informatisées, découle directement des progrès de la microélectronique.
Supercalculateur Airain, hébergé dans le Très grand centre de calcul du CEA. Il est ouvert aux chercheurs de l’organisme et aux industriels français. © Cadam/CEA
Internet et téléphonie
Pour répondre à la demande de l'Internet des objets (IoT), de nouveaux systèmes apparaissent : performants, à faible consommation et enrichis de fonctions de communication, stockage et sécurité. Ils sont accompagnés de systèmes de liaisons numériques sans fil à très haut débit, comme les futurs réseaux 5G qui assurent leur hyperconnectivité.
Santé
Dès 1976, les systèmes électroniques du CEA ont équipé le premier scanner à rayons X pour analyser le corps entier. En 1980, les chercheurs mettent au point le premier tomographe à émission de positons. En 1997, c'est au tour de la génomique de profiter de leurs travaux avec les premières biopuces.
ZOOM SUR... LE LAB-ON-CHIP
Aujourd'hui, les laboratoires sur puces permettent de réaliser les analyses biologiques courantes à domicile et de transmettre les données via un smartphone à son médecin. Des services dans le domaine de la médecine personnalisée sont envisagés : administration ciblée de médicaments, systèmes de contrôle résorbables et matériaux biocompatibles pour des implants et autres patchs médicaux…
Efficacité énergétique
Pour réduire l'impact sur l'environnement des multiples systèmes numériques, gourmands en énergie, de nouvelles technologies et architectures de composants basse consommation sont développées. Ces composants électroniques cherchent en particulier à récupérer et exploiter l'énergie qui les environne, qu'elle soit issue de rayonnements (solaire, radiofréquence ou infrarouge), de variations de température ou d'origine mécanique (chocs, déformations, vibrations).
Cybersécurité
Grâce à leur expertise approfondie des différents types d'attaques physiques que peuvent subir circuits intégrés et composants électroniques, les chercheurs peuvent assurer la sécurité d'un système numérique dans son ensemble. En couplant technologie, design et logiciel embarqué, ils développent ainsi des protections physiques ou des systèmes assurant la traçabilité de chaque circuit.
Imagerie astrophysique
Les télescopes et satellites, et donc l'astrophysique dans son ensemble, bénéficient pleinement des avancées en microélectronique.
Ainsi, parmi la dizaine d'instruments embarqués sur le satellite Solar Orbiter, un spectromètre équipé de nouveaux détecteurs de rayons X produira des images spectroscopiques du plasma solaire. Une caméra spectrométrique de nouvelle génération, miniaturisée (passant de 330 cm2 à 8 cm2 ) et plus performante, va prendre la relève de celle mise en orbite à bord du satellite Integral.
Implanté sur le plateau de Chajnantor au Chili, le télescope Apex détecte de nombreux objets célestes. Pour cela, il est équipé entre autres d'une caméra utilisant des bolomètres ultra-sensibles, conçus pour détecter les plus infimes variations de température dues à la faible radiation submillimétrique, mais qui doivent être refroidis à une température de – 272,85 °C !
Au quotidien
Des détecteurs à base de microbolomètres équipent aujourd'hui de nombreux produits commerciaux, qui vont des systèmes de vision nocturne pour la surveillance et la sécurité, des caméras de thermographie (pour les pompiers par exemple), à des applications grand public : bâtiments connectés, voitures, téléphones portables...
DOCUMENT cea LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante |
|
|
|
|
|
|