ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

LE TEMPS DES NEURONES

 

LE  TEMPS  DES  NEURONES

VIDEO          CANAL  U          LIEN

 

  

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

I R M

 

L'IMAGERIE MÉDICALE PAR RÉSONANCE MAGNÉTIQUE


Le Phénomène de Résonance Magnétique Nucléaire (RMN) découvert en 1946 est relatif aux propriétés magnétiques des noyaux des atomes. En médecine, il a donné naissance à l'Imagerie par Résonance Magnétique (IRM) qui constitue une des avancées les plus importantes de l'histoire de la médecine. L'IRM permet d'obtenir des images anatomiques du corps humain avec une finesse inégalée, sans avoir recours à des radiations ionisantes ou à l'injection de traceurs radioactifs. L'examen par IRM est indolore et peut être répété sans danger. La Spectrométrie de Résonance Magnétique (SRM) est une autre application du phénomène de résonance magnétique dans l'exploration du corps humain. La SRM qui connaît à présent un développement très rapide, analyse et visualise les réactions chimiques qui se produisent dans les tissus et les organes sans avoir à faire de prélèvements (biopsies). On obtient par SRM des images métaboliques du cerveau et de certains autres organes dont les anomalies éventuelles permettent de diagnostiquer de façon très précoce de nombreuses maladies et de quantifier l'effet des médicaments. Une application en plein développement concerne l'angiographie par résonance magnétique (ARM) qui permet la visualisation des vaisseaux de façon non invasive. Enfin, le fonctionnement du cerveau lorsqu'il gère des tâches motrices ou sensorielles peut être suivi par les nouvelles techniques de l'IRM fonctionnelle qui sont basées sur les variations du débit et de l'oxygénation du sang dans le tissu cérébral. Ces différentes modalités de l'Imagerie Médicale par Résonance Magnétique seront illustrées dans leurs applications à l'exploration du cerveau de l'homme.

 

DOCUMENT        CANUL  U            LIEN

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

CHRONOTHERAPIE

 

Paris, 18 novembre 2013


Un pas vers la chronothérapie personnalisée pour le traitement du cancer
La chronothérapie des cancers consiste à administrer les traitements à une heure optimale. En effet l'efficacité des médicaments anticancéreux peut doubler, et leur toxicité diminuer de cinq fois selon l'heure d'administration, car l'organisme est régi par des rythmes biologiques précis. Cependant, il existe d'importantes différences de rythmes biologiques entre les individus que la chronothérapie ne savait pas encore prendre en compte. Une étude internationale menée chez des souris et coordonnée par des chercheurs de l'Inserm, du CNRS et de l'université Paris-Sud1 vient d'ouvrir la voie à la personnalisation de la chronothérapie. Dans un article qui vient d'être publié dans la revue Cancer Research, les chercheurs ont montré que l'heure de tolérance optimale à l'irinotécan, médicament anticancéreux largement utilisé, varie de 8 heures selon le sexe et le patrimoine génétique des souris. Ils ont ensuite construit un modèle mathématique permettant de prévoir, pour chaque animal, l'heure optimale d'administration du médicament. Ils comptent désormais tester ce modèle pour d'autres molécules utilisées en chimiothérapie.
Le métabolisme de l'organisme est rythmé sur 24 heures par l'horloge circadienne. De ce fait, à certains moments précis de la journée ou de la nuit, un médicament donné peut s'avérer plus toxique pour les cellules cancéreuses et moins agressif pour les cellules saines. La chronothérapie des cancers, découverte il y a une vingtaine d'années par Francis Lévi part de ce principe pour améliorer l'efficacité des chimiothérapies. Ses recherches ont montré que l'efficacité des médicaments pouvait doubler selon l'heure à laquelle ils sont administrés. De plus, c'est à cette heure optimale que les médicaments se révèlent aussi jusqu'à 5 fois moins toxiques pour l'organisme.

Cependant, les recherches indiquent la nécessité de personnaliser la chronothérapie. En effet, les rythmes biologiques peuvent changer d'un individu à l'autre. Si, pour 50% des patients l'heure optimale est la même, les 50% restants sont soit en avance soit en retard sur cette heure. L'équipe menée par Francis Lévi a voulu mieux comprendre les facteurs qui jouent sur ces différences dans les rythmes biologiques.

Pour cela, les chercheurs ont étudié la toxicité de l'irinotécan, médicament anticancéreux très utilisé dans le traitement du cancer du côlon et du pancréas, en fonction de l'heure d'administration chez des souris mâles et femelles de 4 souches. Ils ont ainsi pu observer, pour la première fois, que l'heure de meilleure tolérance au traitement variait jusqu'à huit heures d'un groupe de rongeurs à l'autre, selon leur sexe et leur patrimoine génétique.

Les chercheurs ont ensuite voulu trouver une méthode permettant de prévoir cette heure optimale indépendamment du sexe et du patrimoine génétique. Pour cela, ils ont mesuré l'expression de 27 gènes dans le foie et le côlon au cours des 24 heures. Ces mesures ont été analysées selon une méthodologie issue de la biologie des systèmes. Les chercheurs ont ainsi construit et validé un modèle mathématique permettant de prédire précisément l'heure à laquelle l'irinotécan est le moins toxique pour l'organisme grâce à la courbe d'expression de deux gènes, appelés Rev-erbα et Bmal1, qui rythment le métabolisme et la prolifération des cellules.

Les chercheurs veulent à présent valider ce modèle pour d'autres molécules utilisées en chimiothérapie. Au-delà de l'expression des gènes, ils voudraient aussi trouver d'autres paramètres physiologiques liés à l'horloge biologique permettant de prédire l'heure optimale des traitements pour chaque patient. Ces travaux devraient permettre d'accroître l'efficacité et la tolérance des traitements, mais aussi améliorer considérablement la qualité de vie des malades.

DOCUMENT               CNRS              LIEN

 
 
 
initiation musicale toulon  

LES ANTIOXIDANTS DES ALGUES BRUNES

 

Paris, 30 août 2013


Les antioxydants des algues brunes dévoilent leurs secrets de fabrication
Les algues brunes marines possèdent des composés chimiques aromatiques (composés phénoliques) uniques dans le monde végétal, nommés phlorotannins. Du fait de leur rôle d'antioxydants naturels, ces composés suscitent beaucoup d'intérêt pour la prévention et le traitement du cancer, des maladies inflammatoires, cardiovasculaires et neurodégénératives. Des chercheurs du laboratoire Végétaux marins et biomolécules (CNRS/UPMC) à la Station biologique de Roscoff, en collaboration avec deux chercheurs du laboratoire des Sciences de l'environnement marin de Brest (CNRS/UBO/IFREMER/IRD) viennent de révéler l'étape clé de la fabrication de ces composés chez la petite algue brune modèle Ectocarpus siliculosus. L'étude dévoile aussi le mécanisme original d'une enzyme capable de synthétiser des composés phénoliques à finalité commerciale. Ces travaux ont fait l'objet d'un brevet et devraient faciliter la production des phlorotannins utilisés actuellement comme extraits naturels par les industries pharmaceutiques et cosmétiques. Ils sont publiés en ligne sur le site de la revue The Plant Cell.
L'extraction des phlorotannins des algues brunes actuellement utilisés dans l'industrie est complexe et jusqu'à maintenant les voies de biosynthèse de ces composés chimiques naturels restaient inconnues. En étudiant le premier génome décrypté d'une algue brune, l'équipe de Roscoff a identifié chez Ectocarpus siliculosus, plusieurs gènes homologues à ceux des plantes terrestres impliqués dans la biosynthèse des composés phénoliques (1). Parmi ceux-ci les chercheurs ont identifié au moins un gène directement impliqué dans la synthèse des phlorotannins chez les algues brunes. Les chercheurs ont ensuite réussi en introduisant ces gènes dans une bactérie à lui faire produire en grande quantité les enzymes à l'origine de ces composés phénoliques. Une de ces protéines, une polyketide synthase de type III (PKS III) a été étudiée et a permis de comprendre comment celle-ci assure la formation de ces produits phénoliques. Cette PKS III est capable par exemple de synthétiser du phloroglucinol (utilisé notamment dans la synthèse d'antispasmodique et d'explosifs) et d'autres composés phénoliques à finalité commerciale.

Outre ces propriétés mécanistiques, ces résultats dévoilent de nouvelles fonctions biologiques de ces composés dans l'acclimatation et l'adaptation des algues brunes au stress salin. La connaissance de ces voies de biosynthèse permettra aux chercheurs de découvrir les mécanismes de signalisation qui conduisent à la régulation de ce métabolisme. Elle sera utile également pour comprendre les fonctions biologiques et écologiques de ces composés chez d'autres algues brunes déjà commercialisées.

DOCUMENT               CNRS                LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ] Précédente - Suivante
 
 
 
Google