|
|
|
|
|
|
Sommeil paradoxal : ces neurones qui nous paralysent |
|
|
|
|
|
Paris, 12 décembre 2016
Sommeil paradoxal : ces neurones qui nous paralysent
Lors du sommeil paradoxal, le cerveau inhibe le système moteur, ce qui rend le dormeur complètement immobile. Des chercheurs CNRS travaillant au Centre de recherche en neurosciences de Lyon (CNRS/Université Claude Bernard Lyon 1/Inserm/Université Jean Monnet) ont identifié une population de neurones responsables de cette paralysie transitoire des muscles. Le modèle animal créé permettra de mieux comprendre l'origine de certains troubles du sommeil paradoxal, en particulier la maladie qui empêche cette paralysie corporelle. Il sera également d'une grande aide pour étudier la maladie de Parkinson, les deux pathologies étant liées. Ces travaux sont publiés le 12 décembre 2016 sur le site de la revue Brain.
Pourtant plongé dans un sommeil profond, le patient parle, s'agite, donne des coups de pied et finit par tomber de son lit. Il souffre d'une forme de parasomnie appelée REM Sleep Behavior Disorder1 (RBD), une maladie du sommeil qui se déclare aux alentours de la cinquantaine. Alors que pendant la phase de sommeil paradoxal, les muscles sont au repos, chez ce patient, la paralysie corporelle est absente, sans que l'on sache bien pourquoi. Il exprime alors des mouvements anormaux reflétant très probablement son activité onirique.
Une équipe du Centre de recherche en neurosciences de Lyon (CNRS/Inserm/Université Claude Bernard Lyon 1/Université Jean Monnet) a fait un pas de plus dans la compréhension de cette pathologie. Les chercheurs ont identifié dans le cerveau les neurones du noyau sub-latérodorsal, idéalement placés pour contrôler la paralysie du système moteur pendant le sommeil paradoxal. Chez le rat, ils ont ciblé spécifiquement cette population de neurones en y introduisant des vecteurs viraux génétiquement modifiés2. Une fois dans les cellules neurales, ceux-ci bloquent l'expression d'un gène permettant la sécrétion synaptique du glutamate. Incapables de libérer ce neurotransmetteur excitateur, ces neurones ne peuvent alors plus communiquer avec leurs voisins. Ils sont déconnectés du réseau cérébral nécessaire à la paralysie corporelle du sommeil paradoxal.
Depuis 50 ans, la communauté scientifique considérait que ces neurones à glutamate généraient le sommeil paradoxal lui-même. L'expérience menée par l'équipe balaye cette hypothèse : même sans aucune activité de ce circuit neuronal, les rats passent bien par cet état de sommeil. Ils sont profondément endormis et déconnectés du monde extérieur, les paupières closes. Pourtant ces rats ne sont plus paralysés. Leurs comportements rappellent très fortement le tableau clinique des patients souffrant de RBD. Les neurones à glutamate ciblés dans cette étude jouent donc un rôle essentiel dans la paralysie corporelle pendant le sommeil paradoxal et seraient prioritairement atteints dans cette pathologie neurologique.
Ces travaux de recherche vont au-delà de la création d'un nouveau modèle préclinique mimant cette parasomnie. Ils pourraient même avoir une importance capitale dans l'étude de certaines maladies neurodégénératives. En effet, de récents travaux de recherche clinique ont montré que les patients diagnostiqués avec le RBD développent presque systématiquement les symptômes moteurs de la maladie de Parkinson, en moyenne une décennie plus tard. L'équipe cherche maintenant à développer un modèle animal évoluant de la parasomnie à la maladie de Parkinson afin de comprendre les prémices de la dégénérescence neuronale.
DOCUMENT cnrs LIEN |
|
|
|
|
|
|
EPILEPSIE |
|
|
|
|
|
Paris, 29 juillet 2016
Un cerveau virtuel pour décrypter l'épilepsie
Des chercheurs du CNRS, de l'Inserm, d'Aix-Marseille Université et de l'AP-HM viennent de créer pour la première fois un cerveau virtuel permettant de reconstituer le cerveau d'une personne atteinte d'épilepsie. Ce travail permet de mieux comprendre le fonctionnement de la maladie mais aussi d'aider à préparer des gestes chirurgicaux par exemple. Ces résultats viennent d'être publiés en ligne sur le site de la revue Neuroimage.
Un pour cent de la population mondiale souffre d'épilepsie. La maladie affecte les individus différemment, d'où l'importance d'un diagnostic et d'un traitement individualisé. Or actuellement les moyens de comprendre les mécanismes de cette pathologie sont peu nombreux et relèvent surtout de l'interprétation visuelle d'un IRM et d'un électroencephalogramme. Cela s'avère d'autant plus difficile que 50% des patients ne présentent pas d'anomalie visible à l'IRM et que la cause de leur épilepsie reste donc inconnue.
Des chercheurs ont réussi pour la première fois à élaborer un cerveau virtuel personnalisé, en concevant un « modèle » de base et en y additionnant les informations individuelles du patient, comme la façon, propre à chaque individu, dont sont organisées les régions de son cerveau et l'interconnexion des aires entre elles. Le résultat permet de tester sur celui-ci des modèles mathématiques engendrant une activité cérébrale. Les scientifiques ont ainsi pu reproduire le lieu d'initiation des crises d'épilepsie et leur mode de propagation. Ce cerveau a donc une véritable valeur de prédiction du fonctionnement des crises pour chaque patient, ce qui offre un diagnostic beaucoup plus précis.
Par ailleurs, 30% des patients épileptiques ne répondent pas aux médicaments. Leur seul espoir reste alors la chirurgie. Celle-ci est efficace si le chirurgien a de bonnes indications sur les zones à opérer. Le cerveau virtuel permet aux chirurgiens d'avoir une « plate-forme » virtuelle. Ils peuvent ainsi repérer les zones à opérer, en évitant pour ce faire d'avoir à procéder à un geste invasif, et surtout de préparer l'opération en testant différents gestes possibles, en voyant lequel est le plus efficace et quelles sont ses conséquences, chose évidemment impossible à faire sur le patient.
A terme, le but de l'équipe est d'offrir une médecine personnalisée du cerveau, en proposant, grâce à la virtualisation, des solutions thérapeutiques individualisées et spécifiques pour chaque patient. Les chercheurs travaillent actuellement sur des essais cliniques, afin de démontrer la valeur prédictive de leur découverte. Cette technologie est par ailleurs à l'essai sur d'autres pathologies affectant le cerveau, comme l'AVC, Alzheimer, les maladies neuro dégénératives, ou la sclérose en plaques.
Ces travaux impliquent des chercheurs de l'Institut de neurosciences des systèmes (Inserm/AMU), du Centre de résonance magnétique biologique et médicale (CNRS/AMU/AP-HM), du département épileptologie et du département neurophysiologie clinique de l'AP-HM, et l'Epilepsy Center de Cleveland. Ils ont été réalisés au sein de la Fédération hospitalo-universitaire Epinext (www.epinext.org).
DOCUMENT cnrs LIEN |
|
|
|
|
|
|
CORPUS |
|
|
|
|
|
CORPUS
FICHES PÉDAGOGIQUES / VIDÉOS
LIEN
Pour accéder aux fiches pédagogiques et aux vidéos, inscrire CORPUS dans GOOGLE et rechercher
" accueil - corpus - réseau canopé " . |
|
|
|
|
|
|
ACUPUNCTURE |
|
|
|
|
|
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante |
|
|
|
|
|
|