ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

MITOCHONDRIE

 

Paris, 26 OCTOBRE 2011

Comment l'ovocyte fécondé se débarrasse des mitochondries paternelles


Lors de la fécondation, l'ensemble du spermatozoïde pénètre dans l'ovocyte. Pourtant, la plupart des organites apportés par celui-ci, et notamment ses mitochondries, ne sont pas transmis à la descendance. Pour la première fois, une étude franco-américaine impliquant des chercheurs du CNRS, de l'Inserm, de l'Institut Pasteur, de l'Université Paris-Sud et de l'UPMC (1), a révélé comment les organites du spermatozoïde sont digérés par l'ovocyte juste après la fécondation. Ces travaux, publiés dans Science le 28 octobre 2011, pourraient permettre d'améliorer les techniques de clonage et de fécondation médicalement assistée, ainsi que de mieux comprendre les raisons évolutives de l'élimination des mitochondries paternelles.
Les mitochondries, organites cellulaires spécialisés dans la production d'énergie, possèdent leur propre génome. Or, chez la plupart des organismes, parmi lesquels les mammifères, l'ADN mitochondrial du père ne se transmet pas à la descendance : seules subsistent les mitochondries de la mère, contenues dans l'ovocyte. On ne savait pas, jusqu'à présent, comment ni à quel moment les mitochondries paternelles étaient dégradées. Les chercheurs sont parvenus à élucider cette question en utilisant comme organisme modèle le nématode C. elegans, un ver transparent de 1 millimètre de long, bien connu des laboratoires de biologie.

Les chercheurs ont montré que, quelques minutes après la fécondation, l'ovocyte enclenche un processus d'autophagie : les éléments du spermatozoïde sont séquestrés dans des vésicules puis éliminés par voie de dégradation enzymatique. Grâce à la PCR (2), technique d'analyse de l'ADN, les chercheurs ont pu confirmer que peu de temps après la fécondation, tout le matériel génétique issu des mitochondries paternelles est détruit.

Ils ont ensuite inactivé la mécanique cellulaire permettant l'autophagie et observé que, dans ces conditions, les mitochondries paternelles subsistent dans l'embryon. Puis, afin de savoir si ce processus de spermatophagie est conservé chez les mammifères, ils ont cherché dans des ovocytes de souris tout juste fécondés, les marqueurs qui indiquent le début d'une autophagie. Effectivement, ils ont observé que les protéines d'autophagie de l'ovocyte se concentrent autour de la pièce intermédiaire du spermatozoïde, là où se situent les mitochondries. Ceci laisse penser que le mécanisme de dégradation découvert chez C. elegans opère de façon analogue chez les mammifères.

Le métabolisme très actif des spermatozoïdes pourrait conduire à l'apparition fréquente de mutations dans leur ADN mitochondrial. L'ovocyte éliminerait les mitochondries paternelles afin d'éviter que ces mutations ne se perpétuent et affectent la descendance. Ces travaux ouvrent la voie à des expériences permettant de tester cette hypothèse. En effet, en inactivant la spermatophagie, on pourrait créer des organismes héritant des deux jeux de mitochondries et observer l'effet produit sur eux. Par ailleurs, ces travaux posent la question du destin des mitochondries paternelles lorsque des embryons sont créés par clonage ou grâce à des techniques avancées de fécondation médicalement assistée. Ces techniques autorisent-elles la réponse autophagique de l'ovocyte et la destruction des mitochondries paternelles qui pourraient induire des maladies ? La question est à présent ouverte.

DOCUMENT          CNRS          LIEN

 
 
 
initiation musicale toulon  

L'EFFET COUPE-FAIM...

 

5 juillet 2012

L'effet « coupe-faim » des protéines élucidé


Fréquemment recommandées dans les régimes amaigrissants, les protéines alimentaires ont fait la preuve de leur efficacité grâce à leurs effets « coupe-faim ». L'équipe de Gilles Mithieux, directeur de l'Unité Inserm 855 « Nutrition et cerveau » à Lyon, est parvenue à expliquer les mécanismes biologiques responsables de cette propriété. Les chercheurs décrivent en détail les réactions en chaine provoquées par la digestion des protéines qui permettent de délivrer au cerveau un message de satiété, bien après le repas. Ces résultats, publiés le 05 juillet dans la revue Cell, permettent d'envisager une meilleure prise en charge des patients obèses ou en surpoids.
L'équipe de chercheurs Inserm, CNRS et Université Claude Bernard Lyon 1 est parvenue à élucider la sensation de satiété ressentie plusieurs heures après un repas riche en protéines. Elle s'explique par des échanges entre le système digestif et le cerveau, initiés par les protéines alimentaires que l'on trouve majoritairement dans la viande, le poisson, les œufs ou encore certains produits céréaliers.

Lors de travaux précédents, les chercheurs ont prouvé que l'ingestion de protéines alimentaires déclenche une synthèse de glucose au niveau de l'intestin, après les périodes d'assimilation des repas (une fonction appelée néoglucogenèse). Le glucose qui est libéré dans la circulation sanguine (veine porte) est détecté par le système nerveux, qui  envoie un signal « coupe-faim » au cerveau. Plus connue au niveau du foie et des reins pour alimenter les autres organes en sucre, c'est au niveau de l'intestin que la néoglucogenèse délivre un message « coupe-faim » à distance des repas, caractéristique des effets dits « de satiété ».

Dans ce nouveau travail, ils sont parvenus à décrire précisément comment la digestion des protéines provoque une double boucle de réactions en chaîne impliquant le système nerveux périphérique ventral (passant par le nerf vague) et dorsal (passant par la moelle épinière).

L'exploration dans le détail du mécanisme biologique a permis d'identifier des récepteurs spécifiques (les récepteurs µ-opioïdes(1)) présents dans le système nerveux de la veine porte, à la sortie de l'intestin. Ces récepteurs sont inhibés par la présence des oligopeptides, produits de la digestion des protéines.

Dans un premier temps, les oligopeptides agissent sur les récepteurs µ-opioïdes qui envoient un message par la voie du nerf vague et par la voie spinale vers les zones du cerveau spécialisées dans la réception de ces messages.

Dans un second temps, le cerveau envoie un message-retour qui déclenche la néoglucogenèse par l'intestin. Cette dernière initie alors l'envoi du message « coupe-faim » dans les zones du cerveau contrôlant la prise alimentaire, comme l'hypothalamus.

L'identification de ces récepteurs et de leur rôle dans la néoglucogenèse intestinale permet d'envisager de nouvelles pistes thérapeutiques dans le traitement de l'obésité. L'enjeu est de déterminer la façon d'agir sur ces récepteurs µ-opioïdes pour réguler durablement la sensation de satiété. Selon Gilles Mithieux, principal auteur de ce travail : « Sollicités trop fortement, ces récepteurs peuvent devenir insensibles. Il faudrait donc trouver le meilleur moyen de les inhiber "modérément", afin de garder leur effet bénéfique à long terme sur le contrôle de la prise alimentaire ».

DOCUMENT            CNRS            LIEN

 
 
 
initiation musicale toulon  

LES EFFETS DE L'ALCOOL...

 

Paris, 17 avril 2013

Les effets de l'alcool sur le système nerveux central observés à l'échelle atomique
Pour la première fois, des chercheurs de l'Institut Pasteur, du CNRS et de l'Université du Texas ont pu observer les effets de l'éthanol (alcool présent dans les boissons alcoolisées) à l'échelle atomique sur des récepteurs du système nerveux central. Les scientifiques ont ainsi identifié cinq sites de liaison de l'éthanol dans un analogue bactérien des récepteurs nicotiniques, et déterminé comment la liaison de l'éthanol stimule l'activité du récepteur. Ces résultats sont directement extrapolables aux récepteurs humains du GABA (le plus important neurotransmetteur inhibiteur du cerveau humain), qui constituent la principale cible de l'éthanol dans le système nerveux central. Ces travaux sont publiés en ligne le 16 avril sur le site de la revue Nature Communications. Ils ouvrent la voie à la synthèse de composés antagonistes à l'éthanol qui permettraient de limiter l'effet de l'alcool sur le cerveau.

DOCUMENT            CNRS             LIEN

 
 
   Fichier à télécharger : ALCOOL
 
initiation musicale toulon  

ALZHEIMER

 

Paris, 11 janvier 2011

Alzheimer et syndromes apparentés : la protéine Tau impliquée dans la dégénérescence neuronale serait capable de protéger l'ADN
Tau est une protéine essentielle à la stabilisation des cellules, notamment les neurones du cerveau. Dans le cas de nombreuses maladies appelées Tauopathies dont la plus connue est la maladie d'Alzheimer, les protéines Tau s'agrègent anormalement et seraient à l'origine de la dégénérescence neuronale. Aujourd'hui, l'équipe « Alzheimer & Tauopathies » dirigée par Luc Buée, directeur de recherche CNRS au sein de l'Unité Mixte 837 Inserm/Université Lille Nord de France/CHRU de Lille, vient d'identifier un nouveau rôle de cette famille de protéines. Tau serait impliquée dans la protection de l'ADN dans des conditions de stress cellulaire. Ces travaux ouvrent la voie à de nouvelles pistes thérapeutiques permettant de progresser plus rapidement dans la lutte contre la maladie d'Alzheimer et les pathologies apparentées. Les résultats, publiés dans l'édition du mois de février de la revue The Journal of Biological Chemistry, sont disponibles en ligne à l'adresse :
Consulter le site web
Avec plus de 860 000 personnes atteintes en France, la maladie d'Alzheimer et les maladies apparentées représentent la première cause de perte des fonctions intellectuelles liée à l'âge. Cette altération cognitive est le résultat de l'accumulation de protéines Tau anormales dans les cellules nerveuses qui entraine leurs dégénérescences. Le dysfonctionnement de Tau provient d'un excès de phosphorylation (addition d'un groupe phosphate à une protéine ou à une petite molécule) conduisant à l'agrégation des protéines. La raison pour laquelle celles-ci subissent une phosphorylation anormale reste inconnue.

L'équipe « Alzheimer & Tauopathies » dirigée par Luc Buée révèle qu'une fraction de la protéine Tau sous sa forme « déphosphorylée » est capable, en conditions de stress cellulaire, de se fixer à l'ADN pour le protéger.

Les chercheurs ont observé, dans des neurones de souris déficients en protéines Tau, des dommages de leur l'ADN, en condition de stress cellulaire (choc thermique), ce qui n'est pas le cas dans des neurones normaux. L'ajout de protéines Tau normales (déphosphorylées) dans ces neurones déficients a permis de les protéger à nouveau des dommages à l'ADN. Ces résultats montrent que la protéine Tau est l'élément protecteur, ce qui lui confère un rôle clé dans la réponse au stress.

L'équipe de recherche a également montré que seules les protéines Tau « déphosphorylées » sont capables de passer dans le noyau de la cellule nerveuse pour protéger l'ADN. Dans le cas de la maladie d'Alzheimer et de nombreuses Tauopathies où l'on observe d'importants dommages à l'ADN, la phosphorylation anormale des protéines Tau empêcherait leur passage dans le noyau. Ainsi Tau ne pourrait pas exercer son rôle entrainant des dommages accrus à l'ADN.

Ces travaux ouvrent la voie à de nouvelles pistes de recherche permettant de progresser plus rapidement dans la lutte contre cette maladie et les pathologies apparentées. « Nous cherchons aujourd'hui à identifier la région de Tau impliquée dans la liaison à l'ADN et proposons d'étudier les mécanismes du passage de Tau dans le noyau, explique Luc Buée. En effet, moduler la phosphorylation permettrait de restaurer l'ensemble des fonctions normales de Tau et de protéger à nouveau les neurones des malades ».

DOCUMENT        CNRS           LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ] Précédente - Suivante
 
 
 
Google