ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

LIGNÉE HUMAINE

 

Paris, 27 janvier 2011


Lignée humaine : le métissage entre Homo sapiens et espèces plus archaïques n'est pas la seule explication aux données génétiques


Y a-t-il eu métissage entre Homo Sapiens et les populations d'Homo archaïques qu'il a remplacées en Europe (l'homme de Néanderthal) et en Asie (Homo Erectus, l'homme de Denisova) ? Pas forcément, répondent deux bio-informaticiens, l'un du CNRS (1) et l'autre de l'Université d'Uppsala (Suède). Leurs simulations numériques montrent que d'autres événements démographiques pourraient rendre compte de la diversité génétique de notre espèce. Ce travail est publié dans la revue Molecular Biology and Evolution du mois de février 2011.
Depuis que l'on sait séquencer l'ADN, généticiens et bio-informaticiens s'intéressent de plus en plus aux origines de l'homme. Ils ont montré que l'« Eve mitochondriale » (la femme qui portait le dernier ancêtre commun des mitochondries (2) présentes dans la population actuelle) vivait il y a moins de 200 000 ans, de même que  l'« Adam Y » (l'homme qui portait le dernier ancêtre commun des chromosomes Y actuels). Ensuite, ils ont voulu déterminer les âges des derniers ancêtres communs sur le chromosome X et les chromosomes non sexuels, mais jusqu'à présent, aucun consensus n'avait été atteint sur ce sujet. Certains parlaient d'1 à 1,5 million d'années tandis que d'autres pensaient qu'ils étaient contemporains de l'Eve mitochondriale et de l'Adam Y. L'idée prévalant était que, si les âges anciens des derniers ancêtres communs sur le chromosome X et les chromosomes non sexuels était confirmé, cela impliquait un métissage d'Homo Sapiens avec des hommes plus archaïques (repoussant le dernier ancêtre commun à l'époque où les populations archaïques se sont séparées).
Deux chercheurs, l'un au laboratoire « Techniques de l'ingénierie médicale et de la complexité - Informatique, Mathématiques et applications » de Grenoble (3) et l'autre à l'Université d'Uppsala, ont analysé une base publique de données d'ADN, pour calculer les âges des ancêtres communs sur le chromosome X et sur les chromosomes non sexuels. Ils ont trouvé respectivement 1 million et 1,5 million d'années, confirmant l'ancienneté de ces ancêtres.
Dès lors, ils ont voulu savoir si cela impliquait un métissage. Ils ont réalisé des simulations numériques du devenir du patrimoine génétique des populations humaines selon les deux scénarios classiques habituellement envisagés : dans le premier, après être apparu en Afrique, Homo Sapiens aurait ensuite remplacé les espèces archaïques qui vivaient sur les autres continents. Dans le second, il se serait métissé avec ces populations (en Europe avec l'homme de Neandertal, en Asie avec Homo Erectus,  l'homme de Denisova…). Ces simulations aboutissent à un écart entre l'âge de l'Eve mitochondriale et celui de l'ancêtre commun des chromosomes non sexuels qui présente un rapport de 1 à 4. Or le rapport est en fait de 1 à 8. Ni l'un, ni l'autre des deux scénarios ne peut donc rendre compte, à eux seuls, des données de la génétique.
En revanche, deux hypothèses pourraient expliquer cet écart. Première hypothèse : avant la migration hors d'Afrique et depuis des centaines de milliers d'années, la population africaine a été morcelée en plusieurs groupes séparés par des barrières géographiques empêchant le brassage des gènes. Les ancêtres commun du chromosome X et les chromosomes non-sexuels dateraient alors d'avant l'isolement des différents groupes. Deuxième hypothèse : un « goulot d'étranglement démographique » a eu lieu il y a environ 150 000 ans, pendant l'avant-dernière glaciation. La rigueur du climat aurait alors provoqué une diminution de la taille de la population africaine. Les gènes présents sur les chromosomes non sexuels auraient franchi ce goulot d'étranglement, c'est-à-dire qu'ils auraient persisté dans la population après le goulot, contrairement aux gènes de l'ADN mitochondrial, qui eux, ne l'auraient pas passé (4).
 
En conclusion, ce travail montre que l'âge ancien des derniers ancêtres des chromosomes X et non-sexuels n'implique pas forcément un métissage de notre lignée, comme on le pensait jusqu'à présent. En effet, le scénario sans métissage peut également rendre compte, par le biais de l'une ou l'autre des hypothèses des chercheurs (fragmentation ancestrale ou goulot d'étranglement pendant l'avant-dernière glaciation) des résultats obtenus sur les âges des derniers ancêtres communs. A l'avenir, le séquençage  de génomes entiers, en particulier celui de fossiles humains, permettra de tester ces hypothèses. Plus généralement, l'arrivée massive de génomes entiers va nous offrir une occasion sans précédent de mieux appréhender la paléogéographie humaine, et de mieux comprendre comment s'est façonnée la diversité génétique de notre espèce.

 

DOCUMENT              CNRS                LIEN

 
 
 
initiation musicale toulon  

LES ARCHITECTES DU VIVANT

 

LES ARCHITECTES DU VIVANT (1998)


Les protéines sont des macromolécules qui sont à la base du fonctionnement cellulaire des organismes vivants. Pour connaître leurs fonctions, il est indispensable de connaître leur structure car leur forme va conditionner leurs fonctions. La cristallographie par diffraction de rayons X est une technique permettant de visualiser les structures moléculaires. Pour des raisons encore inexpliquées, une molécule organique, par mise en solution puis évaporation, va former un dépôt cristallin. Les cristaux, éclairés par un faisceau de rayons X, fournissent un diagramme de diffraction qui permet de reconstituer l'image de la molécule. La source de rayons X utilisée est le rayonnement synchrotron émis par les accélérateurs de particules. Une des applications principales de l'étude des protéines est la mise au point de médicaments. En effet la connaissance de la forme de la zone active d'une molécule permet de synthétiser des inhibiteurs qui, s'insérant dans cette zone, en bloquent la fonction : il est ainsi possible d'inhiber des fonctions indispensables à la survie des virus.

 

VIDEO               CANAL  U               LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

MIGRATION CELLULAIRE

 

16 octobre 2013


Migration cellulaire : découverte d'une protéine, frein et volant de la cellule
La migration cellulaire, la capacité de certaines cellules à se mouvoir, est essentielle à de nombreux processus physiologiques et peut être déréglée dans des contextes pathologiques. Une vaste collaboration internationale pilotée par une équipe du Laboratoire d'enzymologie et biochimie structurales (CNRS), et comprenant notamment le CEA et l'ENS1, vient de découvrir une protéine régulant la migration cellulaire. Appelée Arpin, elle constitue un frein à la migration et permet également à la cellule de contrôler la direction de sa migration. Les chercheurs ont pu montrer que ces deux rôles d'Arpin ont été conservés au cours de l'évolution depuis l'amibe jusqu'à l'homme. Ces résultats, publiés dans Nature le 16 octobre, devraient avoir un fort impact sur la recherche contre le cancer. En effet, la migration cellulaire et la formation de métastases sont deux phénomènes étroitement liés.
La migration cellulaire est un processus fondamental dans le développement embryonnaire. C'est notamment grâce aux déplacements coordonnés de cellules au cours de la gastrulation que se dessinent les grands axes d'organisation de l'organisme. Chez l'adulte, les migrations cellulaires sont moins répandues, mais néanmoins nécessaires aux cellules immunitaires qui se déplacent dans l'organisme à la recherche d'agents pathogènes ou pour la cicatrisation de blessures, par exemple.

La migration cellulaire dépend de la formation de réseaux d'une protéine fibreuse, l'actine, qui permettent à la cellule de projeter sa membrane en formant une structure appelée lamellipode. Les fibres d'actine qui génèrent cette force sont branchées entre elles grâce à une machine moléculaire appelée « complexe Arp2/3 ». Afin de mieux comprendre la régulation de ce complexe, les scientifiques ont recherché de nouvelles protéines qui interagissent avec lui, à l'aide d'un crible bioinformatique. Ils ont ainsi identifié une protéine qui était jusqu'alors inconnue.  

Les chercheurs se sont aperçus que cette nouvelle protéine, baptisée Arpin, était un inhibiteur du complexe Arp2/3. Arpin freine en effet la projection de la membrane. Le mécanisme par lequel elle opère était tout à fait inattendu : celle-ci ne s'active qu'au moment où le signal de projeter la membrane est donné, un peu comme si un conducteur freinait au même moment qu'il accélérait.

Pour mieux comprendre le fonctionnement d'Arpin, les chercheurs ont éliminé cette protéine dans plusieurs types de cellules très différents, telles que des amibes ou des cellules tumorales. Ils ont ainsi montré que ces cellules dépourvues de ce frein moléculaire migraient plus vite, mais aussi de façon plus rectiligne. Ainsi, non seulement la protéine Arpin freine la cellule, mais en plus, elle lui permet de tourner. L'effet de cette protéine étant localisé dans la membrane cellulaire, son activation freine la progression du lamellipode sans empêcher la formation d'un autre lamellipode ailleurs dans la membrane, changeant ainsi la trajectoire de la cellule. Cette nouvelle protéine joue donc à la fois le rôle de frein et de volant.

Les chercheurs pensent que la découverte d'Arpin aura un fort impact dans le domaine des recherches sur le cancer. En effet, les cellules cancéreuses sont capables de réactiver le programme de migration cellulaire et ainsi produire des métastases qui envahissent l'organisme. La découverte de cette protéine pourrait donc avoir des répercussions tant sur le diagnostic des tumeurs invasives que sur les interventions thérapeutiques qui visent à bloquer la formation de métastases.

 

DOCUMENT             CNRS                 LIEN

 
 
 
initiation musicale toulon  

LA VIE DANS DES CONDITIONS EXTRÊMES

 

LA VIE DANS DES CONDITIONS EXTRÊMES


Au cours des 30 dernières années, nous avons assisté à la découverte d'une extraordinaire diversité de microorganismes habitant des milieux que l'on croyait auparavant hostiles à la vie. Aujourd'hui, on sait que la vie microbienne s'étend sur Terre partout où l'on trouve l'eau à l'état liquide, des calottes polaires jusqu'aux sources hydrothermales sous-marines, dans les déserts, dans des lacs hypersalins ou de soude, dans des eaux acides, à l'intérieur de la croûte terrestre... On a baptisé comme « extrêmophiles » ces organismes limites du vivant, qui se développent optimalement dans des environnements où les conditions physico-chimiques sont insoutenables pour le reste des êtres vivants. Ces conditions mettent à l'épreuve les propriétés de stabilité et de fonctionnalité des macromolécules biologiques. Comment font-ils pour survivre ? Des études de biologie moléculaire montrent que ces microbes sont prodigieusement bien adaptés aux conditions extrêmes et que leurs molécules ne sauraient fonctionner dans des milieux plus doux. De là, l'intérêt biotechnologique que les extrêmophiles ont suscité. Mais surtout, la découverte des extrêmophiles et des nouvelles limites de la vie sur Terre a permis d'aborder la question de la vie extraterrestre de façon rigoureuse. Certains microorganismes de notre planète seraient parfaitement capables de vivre dans les conditions environnementales qui existent dans quelques régions d'autres planètes et satellites, ou d'y avoir existé dans le passé. L'étude des microorganismes des environnements extrêmes a ainsi ouvert des nouvelles perspectives pour aborder la question des origines de la vie et pour l'exploration de la vie dans l'univers.

 

VIDEO             CANAL  U               LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ] Précédente - Suivante
 
 
 
Google