ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

MOLÉCULES PHOTOVOLTAIQUES

 

Paris, 17 juin 2013


De nouvelles molécules photovoltaïques minimalistes et efficaces


Quelle est la molécule la plus simple capable de transformer l'énergie solaire en électricité ? Telle est la question que s'est posée une équipe de l'Institut des sciences et technologies moléculaires d'Angers (Moltech-Anjou, CNRS/Université d'Angers). Les chercheurs ont montré que des molécules extrêmement simples, produites en peu d'étapes avec de très bons rendements de synthèse, peuvent devenir des alternatives crédibles aux molécules plus complexes et aux polymères utilisés pour la fabrication de cellules solaires organiques. Leurs travaux, publiés en ligne dans Advanced Functional Materials et Chemistry : A European Journal, ont permis d'obtenir des molécules de faible poids moléculaire ayant un rendement électrique supérieur à 4 %. Ils montrent ainsi que grâce à l'optimisation de molécules simples on pourra passer de la recherche fondamentale à la production industrielle de dispositifs solaires fabriqués à partir de molécules organiques.
Depuis les années deux mille, une intense compétition internationale vise à produire, à partir de molécules organiques, des cellules solaires aux performances comparables à celles des cellules en silicium des panneaux solaires commercialisés aujourd'hui. En effet, les cellules photovoltaïques organiques devraient être moins chères à produire, et pourraient en outre ouvrir de nouvelles applications.

Deux voies sont actuellement à l'étude dans le photovoltaïque organique : la plus répandue repose sur l'utilisation de polymères. Cependant, ces matériaux sont composés de chaînes macromoléculaires de différentes longueurs ce qui peut engendrer des problèmes de reproductibilité de leurs propriétés électroniques. Une autre voie ouverte par la même équipe de l'Institut Moltech-Anjou en 2005 et reprise depuis par de nombreux laboratoires, consiste à utiliser des molécules organiques solubles de structure parfaitement définie. Cette voie a permis d'obtenir récemment des rendements de conversion électrique de plus de 7 %, proches de ceux des cellules à base de polymères (8-9 %).

Cependant, ces molécules relativement complexes sont difficiles à produire : les plus performantes nécessitent jusqu'à 12 étapes de synthèse avec un rendement global inférieur à 0,10 % difficilement compatible avec une production à l'échelle industrielle. Voilà pourquoi les chercheurs de l'Institut Moltech-Anjou ont décidé d'intégrer dans la conception de nouvelles molécules, les contraintes propres à l'industrie, en termes de rendement de synthèse, de coût, et de respect de l'environnement.

Le premier pas de leur démarche a consisté à rechercher les molécules les plus simples présentant un effet photovoltaïque intéressant. Ils ont ainsi choisi de travailler sur une famille de molécules à base de triarylamines, qui peuvent être synthétisées en peu d'étapes. Ils ont ensuite cherché à optimiser certaines propriétés de ces molécules : capacité d'absorption de la lumière, niveaux d'énergie, stabilité ou encore mobilité des charges électriques. A partir de ces structures minimalistes, ils ont réalisé un travail d'ingénierie moléculaire en ajoutant, selon les besoins, certains types de liaisons ou de groupements chimiques.  

Ils ont ainsi développé des molécules de faible masse moléculaire dont le rendement de conversion électrique est d'environ 4 %. C'est l'un des rendements les plus élevés obtenus avec des molécules de structure aussi simple. Ces molécules peuvent être synthétisées avec d'excellents rendements. Ces recherches qui bénéficient du soutien de groupes industriels se poursuivent afin d'améliorer à la fois les performances des cellules photovoltaïques et les procédés de synthèse. L'un des objectifs est de limiter l'utilisation de réactifs ou de solvants toxiques et de catalyseurs coûteux afin que ces molécules puissent s'intégrer à des dispositifs photovoltaïques pouvant être fabriqués à grande échelle.

 

DOCUMENT            CNRS              LIEN

 
 
 
initiation musicale toulon  

LE LÉVITON

 

Paris, 28 octobre 2013


Le « leviton », une onde électronique silencieuse


Des physiciens du CEA et du CNRS1 ont réussi à injecter quelques électrons dans un conducteur sans que ceux-ci y apportent de perturbation. Ce résultat a été possible grâce à la génération d'impulsions électriques à profil temporel « lorentzien » ultra-court. L'onde quantique électronique obtenue, baptisée par les chercheurs « leviton », se propage sans bruit et sans déformation comme le font certaines ondes solitaires optiques ou hydrodynamiques connues (solitons). Ces travaux ouvrent la voie à l'utilisation de sources d'électrons « à la demande », simples et fiables, utiles à terme pour des applications en physique et en information quantique. 
Ces résultats2 sont publiés le 31 octobre dans l'édition papier de la revue Nature.

 

DOCUMENT                CNRS               LIEN

 
 
 
initiation musicale toulon  

ÉNERGIE

 

Paris, 15 octobre 2013


Une nouvelle technique pour réaliser des réactions de fusion contrôlée aneutronique


Le Laboratoire pour l'Utilisation des Lasers Intenses (LULI) de Polytechnique présente une nouvelle technique pour réaliser des réactions de fusion contrôlée aneutronique dans un article publié par Nature Communications.

Un nouveau schéma pour initier des réactions de fusion contrôlée hors équilibre thermique par laser est publié dans Nature Communications cette semaine. Son avantage principal est d'ouvrir la voie à l'exploitation de réactions de fusion ne produisant pas de neutrons, ce qui concerne la production d'énergie propre et illimitée. La fusion de noyaux légers en noyaux plus lourds dégage des quantités d'énergie énormes et pourrait dans le futur conduire à de nouveaux systèmes de production d'énergie. De plus, ces travaux apportent des informations essentielles pour la compréhension des cycles de combustion et de nucléosynthèse dans les étoiles.

 

DOCUMENT                CNRS                   LIEN

 
 
 
initiation musicale toulon  

LE VLT

 

Paris, 5 mars 2014


VLT : le puissant spectrographe MUSE reçoit sa toute première lumière et ouvre ses yeux sur l'Univers


Un nouvel instrument unique en son genre baptisé MUSE (Multi Unit Spectroscopic Explorer) a été installé avec succès sur le Très Grand Télescope (VLT) de l'European Southern Observatory (ESO) à Paranal, installé en plein désert d'Atacama au nord du Chili. MUSE constitue l'un des quatre instruments de 2ème génération choisis par l'ESO (1) pour équiper le VLT (2), l'équipement phare de l'astronomie européenne de ce début de troisième millénaire. Ce spectrographe 3D à grand champ de vue va permettre grâce à ses performances exceptionnelles d'explorer l'Univers lointain. Il a été porté notamment par deux laboratoires de recherche français : le Centre de recherche astrophysique de Lyon (CNRS/Université Claude Bernard Lyon 1/ENS de Lyon), qui en est le pilote, et l'Institut de recherche en astrophysique et planétologie (CNRS/Université Toulouse III-Paul Sabatier). Au cours de sa « première lumière » (phase de tests) très concluante, MUSE a pu déjà observer des galaxies lointaines, des étoiles brillantes et bien d'autres objets célestes.
MUSE constitue un assemblage de composants optiques, mécaniques et électroniques de sept tonnes et une fantastique machine à remonter le temps destinée à sonder l'Univers primitif. Cet instrument unique en son genre est le fruit du travail acharné de nombreuses personnes durant plusieurs années sous la houlette du responsable du projet  Roland Bacon, directeur de recherche au CNRS au Centre de recherche astrophysique de Lyon. MUSE est le résultat de dix années de conception et de développement à l'échelle internationale (3). Il est notamment porté en France par deux laboratoires de recherche : le Centre de recherche astrophysique de Lyon (CNRS/ Université Claude Bernard Lyon 1/ ENS de Lyon) qui en est le pilote et l'Institut de recherche en astrophysique et planétologie (CNRS/Université Toulouse  III-Paul Sabatier). D'autres laboratoires français ont également contribué à la réussite de ce grand projet : l'Institut de planétologie et astrophysique de Grenoble (CNRS/Université Joseph Fourier), le Laboratoire d'astrophysique de Marseille (LAM) (CNRS/AMU), le Laboratoire d'astrophysique de Bordeaux (LAB) (CNRS/Université de Bordeaux), l'Observatoire de Nice-Côte d'Azur, le Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (CNRS/Université de Strasbourg) et le Gipsa-lab (CNRS/Grenoble-INP/Université Joseph Fourier/Université Stendhal).

MUSE va permettre de plonger au coeur des tous premiers instants de l'Univers afin de sonder les mécanismes de formation des galaxies, d'étudier les mouvements de la matière et les propriétés chimiques des galaxies proches. Parmi ses autres objectifs scientifiques figure l'étude des planètes et des satellites du Système Solaire, des propriétés des régions de formation stellaires dans la Voie Lactée ainsi que dans l'Univers lointain.

MUSE constitue un outil de découverte à la fois puissant et unique : il utilise ses 24 spectrographes pour séparer la lumière en ses différentes composantes couleur pour constituer à la fois des images et des spectres de régions spécifiques du ciel. Il crée ainsi des vues 3D de l'Univers (4). Grâce à MUSE, l'astronome peut se déplacer au sein du nuage de données acquises par l'instrument et ainsi étudier différentes vues de l'objet obtenues pour chaque longueur d'onde. MUSE associe le potentiel de découverte d'un dispositif d'imagerie avec les capacités de mesure d'un spectrographe, tout en bénéficiant de l'excellente qualité d'image qu'offre l'optique adaptative.

Après une période d'essai et de validation préliminaires en Europe au mois de septembre 2013, MUSE a été acheminé à l'Observatoire Paranal de l'ESO au Chili. Il a été réassemblé au camp de base puis transporté avec soin sur la plateforme du VLT et finalement installé sur la quatrième Unité Télescopique de l'Observatoire. MUSE sera bientôt suivi par l'instrument SPHERE, dernier né de la seconde génération d'instruments destinés à équiper le VLT.

 

DOCUMENT              CNRS                  LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 ] Précédente - Suivante
 
 
 
Google