Arrêt provisoire des cours pour raison médicale.

ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

LE STAPHYLOCOQUE DORÉ ...

 

Paris, 1er novembre 2012


Staphylocoque doré : une piste pour expliquer sa résistance aux antibiotiques


Des chercheurs de l'Institut Pasteur, du CNRS, et de la faculté de médecine de l'Université de Tsukuba au Japon, ont pour la première fois prouvé que l'activation d'un gène du staphylocoque doré (Staphylococcus aureus) permettait à ce dernier d'incorporer de l'ADN exogène et de devenir résistant à la méticilline. Ils ont également identifié deux mécanismes d'activation de ce gène. Ces résultats constituent un pas important dans la compréhension des mécanismes d'acquisition des gènes de résistance aux antibiotiques par S. aureus. Ces travaux sont publiés dans la revue PLoS Pathogens le 1er novembre.
Staphylococcus aureus est une bactérie extrêmement pathogène pour l'homme. Elle est la cause de multiples infections, qui vont de la  lésion cutanée (furoncles, panaris, impétigo, etc.), à l'endocardite, la pneumonie aiguë, l'ostéomyélite ou la septicémie. Elle est très redoutée en milieu hospitalier et arrive au premier rang des germes à Gram positif responsables d'infections nosocomiales. Les souches les plus dangereuses sont celles qui sont multi-résistantes aux antibiotiques. C'est le cas du Sarm1, résistant à la méticilline (comme 60% des souches multirésistantes), répandu dans le milieu hospitalier européen et qui pose un problème de santé publique majeur.  

Jusqu'à présent, les mécanismes à l'origine de l'acquisition des gènes de résistance par les bactéries du genre staphylocoque étaient inconnus. Cependant, l'équipe de Tarek Msadek, chercheur dans l'unité Biologie des bactéries pathogènes à Gram-positif, Institut Pasteur-CNRS, en collaboration avec la faculté de médecine de Tsukuba, vient de faire une importante découverte : pour la première fois, les chercheurs ont démontré que l'activation d'un gène de S. aureus, appelé sigH, permet à ce dernier de mettre en route une machinerie spécialisée et de capturer de l'ADN présent dans son environnement, et donc potentiellement d'acquérir des gènes de résistance aux antibiotiques. Les chercheurs ont également mis en évidence deux mécanismes distincts d'activation du gène sigH. Dans leur démonstration, après avoir activé expérimentalement le gène sigH, les chercheurs ont réussi sont parvenus à transformer naturellement une souche de S. aureus sensible à la méticilline en une souche résistante, analogue à celles responsables des infections nosocomiales.

L'ensemble de ces résultats suggère que l'inhibition du gène sigH serait une piste sérieuse pour lutter contre l'apparition de souches deS. aureus multirésistantes aux antibiotiques.

 

DOCUMENT                 CNRS                    LIEN

 
 
 
initiation musicale toulon  

LE GÉNOME DU CHAMPIGNON DE PARIS

 

Paris, 9 octobre 2012


Le génome du champignon de Paris décrypté


Au sein d'un consortium international, des équipes de l'INRA, du CNRS, des universités de Lorraine et d'Aix-Marseille ont séquencé le génome du champignon de Paris (Agaricus bisporus). Les chercheurs ont identifié les mécanismes génétiques en jeu dans la formation de ce champignon et ses capacités d'adaptation au milieu dans lequel il vit. Plus largement, ces travaux permettent de mieux comprendre le rôle des champignons forestiers dans les processus de recyclage du carbone dans l'environnement. Publiés la semaine du 8 octobre 2012 dans la revue PNAS, ces résultats conduiront également à améliorer la culture industrielle du champignon de Paris.
Depuis plus de 300 ans, le processus de fructification du champignon de Paris est maîtrisé dans les champignonnières à des fins alimentaires. La production mondiale dépasse les 1 400 000 tonnes dont plus de 100 000 tonnes par an pour la France (essentiellement dans la région du Val de Loire). À l'état sauvage, le champignon de Paris est plutôt rare et pousse principalement sur les litières dans les forêts (surtout de cyprès) et les prairies.
Dans le cadre d'un vaste projet de séquençage d'une trentaine de génomes de champignons saprophytes (1) mené aux États-Unis par le Joint Genome Institute, des équipes de l'INRA, du CNRS, des universités de Lorraine et d'Aix Marseille (2) ont analysé le génome de deux variétés d'Agaricus bisporus, le champignon de Paris (ou champignon de couche) très proches génétiquement ; l'une poussant dans un désert californien et l'autre utilisée en culture.
En comparant le répertoire de gènes de ces Agarics avec ceux de plusieurs champignons xylophages (qui dégradent le bois mort), les chercheurs ont mis en évidence différents mécanismes enzymatiques propres au champignon de Paris. Ces processus spécifiques lui permettent de survivre et de proliférer sur un milieu complexe très riche en acides humiques freinant la croissance de la plupart des autres micro-organismes. Ces acides s'accumulent dans l'humus des litières forestières, des prairies ou le compost dans les champignonnières, sur lesquels poussent abondamment les champignons de Paris. L'utilisation efficace de cette matière organique nécessite un arsenal d'enzymes de détoxication et de dégradation particulièrement performant. Ainsi, l'étude révèle, chez le champignon de Paris, l'existence de 24 formes d'une peroxydase (une enzyme permettant l'oxydation) particulièrement efficace dans la dégradation des acides humiques, là où les champignons xylophages n'en présentent qu'une seule. Ces résultats permettent de mieux comprendre comment les champignons décomposeurs du bois et d'humus, en agissant de concert, jouent un rôle écologique majeur et assurent le recyclage du carbone dans l'environnement. Ces travaux confirment également le lien entre la niche écologique de ces champignons et leur patrimoine génétique.
Par ailleurs, les scientifiques ont identifié un ensemble de facteurs génétiques contrôlant la croissance et la formation du champignon de Paris. Ouvrant la voie à de nouvelles améliorations génétiques de cette espèce, ces résultats aboutiront à la sélection de nouvelles souches pour la filière agro-alimentaire.

 

DOCUMENT                 CNRS                  LIEN

 
 
 
initiation musicale toulon  

OBSERVER EN TEMPS RÉEL LA RÉPARATION DE L'ADN

 

Paris, 7 septembre 2012


Observer en temps réel la réparation d'une seule molécule d'ADN


L'ADN est sans cesse endommagé par des agents environnementaux tels que les rayons ultra-violets ou certaines molécules de la fumée de cigarette. Sans arrêt, les cellules mettent en œuvre des mécanismes de réparation de cet ADN d'une efficacité redoutable. Une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, est parvenue à suivre en direct, pour la première fois, les étapes initiales de l'un de ces systèmes de réparation de l'ADN encore peu connu. Grâce à une technique inédite appliquée à une molécule unique d'ADN sur un modèle bactérien, les chercheurs ont compris comment plusieurs acteurs interagissent pour réparer l'ADN avec une grande fiabilité. Publiés dans Nature le 9 septembre 2012, leurs travaux visent à mieux comprendre l'apparition de cancers et comment ils deviennent résistants aux chimiothérapies.
Les rayons ultra-violets, la fumée de tabac ou encore les benzopyrènes contenus dans la viande trop cuite provoquent des altérations au niveau de l'ADN de nos cellules qui peuvent conduire à l'apparition de cancers. Ces agents environnementaux détériorent la structure même de l'ADN, entraînant notamment des dégâts dits « encombrants » (comme la formation de ponts chimiques entre les bases de l'ADN). Pour identifier et réparer ce type de dégâts, la cellule dispose de plusieurs systèmes, comme la « réparation transcriptionellement-couplée » (ou TCR pour Transcription-coupled repair system) dont le mécanisme d'action complexe reste encore aujourd'hui peu connu. Des anomalies dans ce mécanisme TCR, qui permet une surveillance permanente du génome, sont à l'origine de certaines maladies héréditaires comme le Xeroderma pigmentosum qui touche les « enfants de la Lune », hypersensibles aux rayons ultra-violets du Soleil.

Pour la première fois, une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, a réussi à observer les étapes initiales du mécanisme de réparation TCR sur un modèle bactérien. Pour y parvenir, les chercheurs ont employé une technique inédite de nanomanipulation de molécule individuelle(1) qui leur a permis de détecter et suivre en temps réel les interactions entre les molécules en jeu sur une seule molécule d'ADN endommagée. Ils ont élucidé les interactions entre les différents acteurs dans les premières étapes de ce processus TCR. Une première protéine, l'ARN polymérase(2), parcourt normalement l'ADN sans encombre mais se trouve bloquée lorsqu'elle rencontre un dégât encombrant, (tel un train immobilisé sur les rails par une chute de pierres). Une deuxième protéine, Mfd, se fixe à l'ARN polymérase bloquée et la chasse du rail endommagé afin de pouvoir ensuite y diriger les autres protéines de réparation nécessaires à la réparation du dégât. Les mesures de vitesses de réaction ont permis de constater que Mfd agit particulièrement lentement sur l'ARN polymérase : elle fait bouger la polymérase en une vingtaine de secondes. De plus, Mfd déplace bien l'ARN polymérase bloquée mais  reste elle-même ensuite associée à l'ADN pendant des temps longs (de l'ordre de cinq minutes), lui permettant de coordonner l'arrivée d'autres protéines de réparation au site lésé.

Si les chercheurs ont expliqué comment ce système parvient à une fiabilité de presque 100%, une meilleure compréhension de ces processus de réparation est par ailleurs essentielle pour savoir comment apparaissent les cancers et comment ils deviennent résistants aux chimiothérapies.

 

DOCUMENT                CNRS                 LIEN

 
 
 
initiation musicale toulon  

LA MODÉLISATION DES MOLÉCULES DE LA VIE

 

Texte de la 614e conférence de l'Université de tous les savoirs donnée le 21 juin 2006
Richard Lavery : « La modélisation des molécules de la vie »


Le besoin de modèles
Depuis toujours les scientifiques, comme les ingénieurs, les architectes et même les enfants, ont eu besoin de construire des modèles pour les aider à comprendre le monde complexe qui nous entoure. Néanmoins, les modèles dont je vais parler ici ont dû attendre la fin du dix-neuvième siècle pour voir le jour. La raison principale pour cela est que nous allons parler du monde des atomes et leurs assemblages pour former des molécules et des macromolécules. Même si l'existence des atomes a été postulée par le philosophe grec Démocrite [1], 400 ans avant notre ère, il a fallu attendre les années 1900 pour accumuler suffisamment d'évidence en faveur de l'existence des atomes pour convaincre le monde scientifique. A ce sujet, il est remarquable de noter que les chimistes, qui avaient utilisé les formules pour décrire la constitution des molécules depuis le début du dix-neuvième siècle (par exemple, H2O, deux "parts" d'hydrogène pour une "part" d'oxygène), ont été parmi les plus difficiles à convaincre que "part" pouvait se traduire par atome et ceci malgré les travaux de leurs illustres prédécesseurs, notamment Lavoisier et Dalton, en faveur de la théorie atomique [1].
C'est donc aux alentours de 1900 que les premiers modèles représentant le nombre et l'organisation spatiale des atomes au sein des molécules ont vu le jour. Ces modèles comme vous pouvez le voir dans l'illustration, ressemblent beaucoup aux modèles que l'on trouve dans les salles de cours et les laboratoires aujourd'hui. Il y a naturellement différents types de représentation pour satisfaire les besoins des utilisateurs. Certaines emploient des sphères tronquées pour illustrer l'espace occupé par chaque atome (modèles Corey-Pauling-Kolton ou CPK des années '50), tandis que d'autres se concentrent sur la conformation des liaisons qui sont représentées par des fils métalliques (modèles Dreiding des années 60).
De tels modèles fonctionnent bien pour des molécules composées de quelques dizaines d'atomes, mais posent des problèmes pour construire des macromolécules formées de milliers, voir de dizaines de milliers d'atomes. Cette difficulté se fait ressentir au début des années soixante quand les premières structures des protéines ont été obtenues par les cristallographes à Cambridge. A partir de ce moment, il a fallu chercher d'autres moyens de modélisation plus rapides à mettre en place, moins chers, et plus maniables. C'est l'ordinateur et le passage aux modèles virtuels qui a fourni la réponse. Mais avant de parler de ces développements il y un exemple remarquable de modélisation "classique" qui mérite discussion.
L'ADN - un exemple phare du vingtième siècle
L'histoire de l'ADN (acide désoxyribonucléique) commence en 1869 quand Friedrich Miescher isole une substance de noyaux des cellules humaines qu'il dénomme "nucléine". Il s'agit en fait d'un mélange complexe de protéines et d'ADN. Il faut attendre le travail des chimistes du vingtième siècle et notamment les efforts de Phoebus Levene à l'Institut Rockefeller à New York pour connaître la structure chimique de la molécule qui se révèle être de longues chaînes composées d'une alternance de phosphates et de sucres. Sur chaque sucre est accrochée une base. Quatre bases sont identifiées : adénine (A), cytosine (C), guanine (G) et thymine (T). En formulant l'hypothèse que ces quatre bases se répètent de façon régulière le long de la chaîne d'ADN (par exemple, ACGT-ACGT-ACGT-.....) Levene relègue l'ADN à la famille de polymères jouant probablement un rôle structural au sein de la cellule. Mais, Levene se trompe et comme Oswald Avery, un autre scientifique de l'Institut Rockefeller, montre en 1944, l'ADN a le pouvoir de transformer des bactéries. L'ADN porte donc le message génétique et une course est lancée pour trouver sa structure et comprendre son fonctionnement. Plusieurs informations sont connues. Chargaff démontre que les bases sont présentes dans des rapports fixes de telle façon que le rapport de concentrations [A]/[G] est égale au rapport [T]/[C]. Astbury et ensuite Rosalind Franklin obtiennent des clichées de diffraction des rayons X à partir des fibres d'ADN et démontrent que la molécule possède une structure hélicoïdale.
Linus Pauling, un des plus grands chimistes du vingtième siècle propose une structure qui ne peut pas être correcte puisqu'il met les bases à l'extérieur et les phosphates en contact au centre de la structure sans tenir compte du fait qu'ils sont chargés négativement et ne peuvent pas se rapprocher ainsi [2].
La solution est trouvée à Cambridge par un jeune biologiste américain James Watson et le physicien anglais Francis Crick. Leur collègue Jerry Donohue explique que la formule normalement employée pour les bases n'est probablement pas correcte. Ce changement est la clé. Watson, jouant avec des modèles des bases, voit qu'il peut les assembler par paire : A avec T, G avec C. Les deux paires ont exactement la même forme et elles peuvent être placées, non pas à l'extérieur de la structure hélicoïdale, mais au centre.
Il crée ainsi la fameuse double hélice qui est devenue une des icônes de notre époque [3]. La construction du modèle, guidée par les informations expérimentales, donne un résultat si simple et si beau qu'il est accepté immédiatement. La double hélice est non seulement compatible avec les données expérimentales, mais suggère également comment l'information génétique passe d'une cellule à une autre. En effet, il suffit de séparer les deux chaînes et de fabriquer de nouvelles doubles hélices en copiant l'information: A dans le premier chaîne donne son complément T, T dans le deuxième chaîne donne son complément A. Il est probable que nous ne verrons jamais plus un modèle moléculaire qui aura un tel impact.
L'arrivée des ordinateurs
Pour aller plus loin avec la modélisation des molécules de la vie, il a fallu une autre étape clé - l'arrivée des ordinateurs. L'envie de calculer plus vite et avec plus de précision a inspiré les ingénieurs depuis longtemps. Qu'il s'agit d'obtenir les tables logarithmiques sans erreur, d'effectuer des calculs de balistique, ou de comprendre une réaction de fission nucléaire, les capacités de calcul humaines sont rapidement dépassées. Quelques pionniers du dix-neuvième siècle comme Charles Babbage ont tenté de résoudre les problèmes à l'aide d'une machine [4]. Plus précisément, une machine "universelle" capable d'effectuer différents types de calcul en suivant une suite d'instructions. Des ingénieurs comme Jacquard travaillant pour l'industrie de soie à Lyon, ont fourni le moyen d'écrire de tels programmes sur des ensembles de cartes perforées. Les plans de Babbage ont été bon (la Musée des Sciences de Londres vient de construire et de faire marcher des éléments de l'ordinateur de Babbage, et notamment son imprimante) mais en 1850 il n'avait ni les bons matériaux ni des outils de fabrication suffisamment précis. Les ordinateurs ont réellement vu le jour pendant la deuxième guerre mondiale quant les calculs rapides sont devenus indispensables pour casser des codes et pour faire avancer le projet Manhattan vers la production de la bombe atomique.
La disponibilité des ordinateurs pour des travaux non militaires date des années soixante. Les chimistes et biologistes n'ont pas attendu pour profiter de leurs possibilités, non seulement pour effectuer des calculs, mais aussi pour créer une nouvelle façon de visualiser des molécules, d'abord par des images fixes imprimées sur papier et ensuite par des images animées grâce au couplage entre l'ordinateur et l'écran cathodique. Dès 1966, Cyrus Levinthal à MIT a mis au point un système capable de représenter la structure d'une protéine et de la manipuler dans l'espace [5]. Depuis, les moyens de visualisation ont progressé de façon remarquable et même un ordinateur familial permet de se plonger dans le monde fascinant des macromolécules biologiques à travers des représentations toujours plus belles. Je vous encourage d'ailleurs de se procurer un des logiciels de visualisation gratuits tels que VMD [6] et d'entreprendre votre propre voyage au sein des protéines et des acides nucléiques (dont les structures sont librement accessibles dans la banque RSCB). Les coordonnées de VMD et du RCSB sont indiquées dans la liste des sites internet ci-dessous.
En parallèle, avec le développement du graphisme, les logiciels permettant de modéliser mathématiquement le comportement des molécules ont vu le jour, initialement pour satisfaire les besoins de la spectroscopie en interprétant les spectres en termes de vibrations moléculaires et ensuite pour modéliser la structure, la dynamique et les interactions des molécules dans leur environnement biologique, c'est à dire, entourées de l'eau et d'ions et soumises aux effets de l'excitation thermique. Le développement de tels logiciels continue aujourd'hui en ciblant des représentations moléculaires toujours plus près de la réalité et la capacité de modéliser des systèmes toujours plus grands et plus complexes.
Les molécules
Qu'est qu'il faut pour créer une molécule virtuelle au sein de l'ordinateur ? Peut-on modéliser la dynamique d'une molécule, le processus d'assemblage d'un complexe multi-moléculaire ou le fonctionnement d'un enzyme ? Pour commencer à répondre à ces questions, il faut se rappeler que les molécules, même les macromolécules de la vie, sont très petites. Leur taille se mesure en dizaines de nanomètres (un nanomètre est un mille milliardième d'un mètre, 10-9 m) et il faut, par exemple, empiler 30,000 protéines pour atteindre l'épaisseur d'une feuille de papier ! A ces dimensions, c'est la mécanique quantique qui règne; les électrons forment un nuage de densité électronique autour des noyaux atomiques, et obéissent à la fameuse équation de Schrödinger. Dans ce monde quantique toute la chimie est possible, les électrons et les noyaux peuvent être perturbés par des interactions avec la lumière, d'autres rayonnements ou d'autres molécules et les électrons peuvent s'échanger entre différentes molécules en formant et en brisant des liaisons chimiques. Néanmoins, les calculs associés sont complexes et, malgré le progrès remarquable de la chimie quantique, ils sont encore prohibitifs pour la plupart des systèmes macromoléculaires.
Dans ce cas, si on accepte de se limiter aux études de la structure, la dynamique conformationnelle et les interactions physiques des macromolécules nous pouvons retourner vers la mécanique classique de Newton. Dans ce monde les atomes deviennent des billes (avec des tailles et des charges électrostatiques qui dépendent de leurs identités chimiques et de la molécule à la quelle ils appartiennent) et les liaisons chimiques deviennent des ressorts.
D'autres termes simples représentent la déformation des angles de valence, la rotation des angles dièdres et l'équilibre entre l'attractivité des atomes à longue portée et leur répulsion à courte portée. On crée ainsi un "champ de force" qui permet de calculer l'énergie d'un système moléculaire, d'optimiser sa structure en minimisant cette énergie ou encore de suivre sa dynamique à une température donnée (en intégrant l'équation de Newton Force = Masse x Accélération dans le temps). Quelques décennies de recherche ont permis de raffiner de champs de force suffisamment pour obtenir des résultats en bon accord avec l'expérience. Combinés avec la puissance croissant des ordinateurs, ils sont devenus un moyen efficace pour étudier le comportement des macromolécules biologiques. Nous retournerons vers la double hélice de l'ADN pour montrer un exemple.
Le physicien sonde l'ADN
Dans notre domaine, un des développements les plus excitants de ces dernières années a été la possibilité de manipuler directement une seule molécule [7]. L'ADN est un bon candidat pour de telles expériences puisque, malgré un diamètre de seulement deux nanomètres, sa longueur peut atteindre des centimètres. L'envie de manipuler une seule molécule résulte de l'observation que l'évaporation d'une gouttelette d'eau pouvait étirer l'ADN bien au delà de sa longueur naturelle [8]. Par la modification chimique des extrémités de la molécule (un sort de "scotch" moléculaire), il était ensuite possible d'attraper une molécule d'ADN et de la fixer sur une extrémité à une surface et sur l'autre à une microbille en polystyrène. En tirant sur la microbille il est devenu possible de suivre l'extension de la molécule et de mesurer les forces exercées. Les résultats ont été surprenants puisqu'il s'avère que l'ADN ne se comporte pas comme un ressort simple. Au delà d'une certaine force (environ 70 picoNewtons), la molécule est capable de presque doubler sa longueur sans que la force exercée augmente [9]. L'explication structurale de ce phénomène est venue de la modélisation. En étirant la double hélice dans le monde virtuel de l'ordinateur, nous avons constaté qu'il y a en fait deux chemins d'étirement, soit en déroulant la double hélice, soit en diminuant son diamètre par l'inclinaison des paires de bases. En réalité il est probable que ces deux chemins participent à former la structure étirée qui porte désormais le nom d'ADN-S (stretched DNA) [9, 10].
Par la suite, l'emploi d'une microbille magnétique a permis de contrôler à la fois l'étirement et l'enroulement de la molécule [11]. A nouveau les résultats ont été surprenants. En diminuant le nombre de tours de la double hélice on arrive à séparer les deux brins, mais en augmentant le nombre de tours on a constaté que la molécule s'allonge et qu'on pouvait atteindre une rotation de presque 160° entre les paires de bases successives (contre seulement 34° dans la conformation usuelle de l'ADN). La modélisation de se phénomène a permis de postuler une nouvelle forme de la double hélice qui se ressemble étrangement à la structure incorrecte proposée par Linus Pauling avant le succès de Watson et Crick. Cette structure, qui est maintenant appelé ADN-P (P pour Pauling) se distingue par la position des bases, qui sont à l'extérieure de la structure, tandis que les brins phosphodiesters sont entrelacés au centre [12].
Ces expériences et la modélisation qui a suivi ont montré la complexité de la mécanique de l'ADN. Elles ont aussi servi de base pour une nouvelle domaine scientifique, la physique des molécules uniques, qui continue de fournir des informations sur une gamme de systèmes biologiques (complexes protéine-ADN, la chromatine, les moteurs moléculaires, le fonctionnement des virus, ...) qui sont difficilement accessibles par d'autres types d'expérience.
Partir des ponts pour arriver aux protéines
Pour continuer sur le thème de la mécanique des macromolécules, j'aimerais parler un peu des protéines. Les protéines ont des structures plus complexes que l'ADN. D'abord, elles sont formées de polymères (polypeptides) composés de 20 types de sous unités différentes (les acides aminés), plutôt que seulement quatre types pour l'ADN (les nucléotides portant les bases A, C, G et T). Ensuite, dans la plupart des cas, le repliement de la chaîne des acides aminés conduit à des structures compactes et globulaires.
Cette complexité illustre l'importance de la structure des protéines, mais la structure seule n'est pas suffisante pour tout comprendre. On peut raisonnablement assumer que leurs propriétés mécaniques sont également importantes compte tenu des travaux accomplis par des protéines. Ainsi, plusieurs protéines appartiennent à la catégorie des enzymes et sont capables de catalyser des réactions chimiques avec une spécificité remarquable, d'autres jouent un rôle structural au sein de nos cellules et d'autres encore fonctionnent en tant que moteurs miniatures. Toutes ces taches nécessitent non seulement des structures particulières, mais aussi des propriétés mécaniques appropriées.
Nous avons tenté de mettre au point des techniques de modélisation pour étudier ces propriétés [13]. Plus précisément, à partir des fluctuations spatiales des acides aminés lors d'une simulation dynamique, nous avons pu calculer des constants de force correspondant à la difficulté de déplacer un résidu donné par rapport au reste de la structure [14]. Pour accélérer les calculs nous avons utilisé un modèle protéique plus simple comportant seulement quelques points pour chaque acide aminé (plutôt qu'une dizaine d'atomes) et nous avons également remplacé le champ de force classique avec de simples ressorts entre tous les résidus proches. Ainsi modélisée, la protéine ressemble à un objet élastique où la densité de ressorts reflète le repliement de la chaîne polypeptidique.
Compte tenu de la simplicité de notre modèle, nous étions surpris de voir que les propriétés mécaniques des différents résidus pouvaient varier de façon importante au sein d'une seule protéine. La figure montre se résultat à travers le "spectre" de constantes de force pour les acides aminés d'une péroxidase. Cette protéine contient un groupement heme qui joue un rôle central en catalysant la cassure d'une liaison péroxide, R-O-O-R', pour former deux alcools, R-OH et R'-OH, par l'addition de deux atomes d'hydrogène et de deux électrons. Un petit nombre de résidus sont particulièrement difficiles à déplacer et ont des constantes de force très élevées. Il s'avère que ces résidus sont exactement ceux qui maintiennent le groupement heme en place et sont donc des résidus clés pour le fonctionnement de la protéine.
Après l'étude d'environ 100 protéines, nous avons pu démontrer que les résidus ayant un rôle fonctionnel ont presque toujours des propriétés mécaniques exceptionnelles. Ils sont, dans l'ensemble, tenus de façon beaucoup plus rigide au sein de leurs structures protéiques que les autres résidus. Nous pouvons conclure que cette propriété est importante pour l'activité protéique et que l'évolution a choisi le repliement complexe de chaque protéine non seulement pour placer les résidus clés au bon endroit, mais aussi pour assurer qu'ils y restent.
L'avenir de la modélisation en biologie
Il est toujours dangereux de parler de l'avenir. Néanmoins, dans le domaine de la modélisation on peut faire deux prédictions concernant les développements possibles et souhaitables sans prendre trop de risques.
Premièrement, les ordinateurs vont continuer à progresser en puissance comme en capacité de stockage. Depuis les années quarante jusqu'à nos jours la puissance des processeurs a doublé environ tous les 18 mois. En même temps, les mémoires ont changé de quelques octets à des kilooctets, puis des mégaoctets, des gigaoctets et maintenant des téraoctets. Aujourd'hui certaines voitures ont plus de puissance de calcul que les capsules Apollo des années soixante-dix ! Au delà de la puissance des processeurs individuels, il est aussi devenu courrant d'assembler de dizaines, des centaines, voir des milliers de processeurs pour multiplier la puissance disponible. De telles machines sont traditionnellement construites dans les bâtiments des centres de calculs, mais il est aussi possible de créer une machine virtuelle composé d'ordinateurs indépendants. Les efforts de projets tels que "Screensaver Lifesaver". Ce projet cible la conception de nouveaux médicaments contre le cancer grâce aux calculs effectués par un logiciel de sauvegarde d'écran installé volontairement par des particuliers sur leurs propres PC (voir la liste des sites internet ci-dessous). Les résultats de Lifesaver montrent la puissance de cette approche puisque les calculs effectués ont largement dépassé la puissance des gros centres de calcul conventionnels avec plus de 450,000 heures de calcul sur un total de 3.5 millions de PC à travers le monde.
Deuxièmement, malgré la puissance de calcul qui sera disponible, elle sera toujours insuffisante pour modéliser toute la complexité des systèmes vivants. Aujourd'hui nos efforts portent sur une meilleure compréhension de la structure et de la dynamique de macromolécules individuelles, sur les interactions macromolécule-ligand ou sur les interactions entre deux macromolécules. En revanche, au sein de la cellule, chaque macromolécule se trouve en contact avec des dizaines d'autres dans un milieu hétérogène et dense qui, de surcroît, évolue dans le temps. La plupart de complexes qui se forment dans ce milieu impliquent de multiples macromolécules. Un nombre très important de petites molécules entre et sort des cellules et voyage entre les différents compartiments cellulaires pour passer des messages chimiques, tandis qu'un système de fibres et de moteurs se charge de déplacer des objets moléculaires plus encombrants et participe dans les mouvements et les interactions de la cellule. Finalement, les cellules sont protégées et partitionnées par des membranes lipidiques comportant une gamme impressionnante de canaux et de récepteurs qui se chargent de la communication avec le monde extracellulaire. Par comparaison, nos efforts de modélisation semblent un peu timides. Comprendre la complexité des systèmes vivants au niveau moléculaire nécessitera non seulement toute la puissance informatique disponible, mais aussi toute la créativité des chercheurs pour mettre au point de nouveaux modèles et de nouveaux algorithmes de modélisation.
Remerciements
La recherche aujourd'hui implique plus des équipes que des individus. Je souhaite remercier mes collègues qui ont contribué aux travaux présentés ici. Notamment, pour la modélisation des acides nucléiques et leur manipulation, Anne Lebrun et Krystyna Zakrzewska, et nos collègues de l'Ecole Normale Supérieure de Paris, Jean-François Allemand, David Bensimon, Didier Chatenay et Vincent Croquette, et pour l'étude de la mécanique des protéines, Fabien Cailliez, Isabelle Navizet, et Sophie Sacquin-Mora. Je remercie également les autres membres du Laboratoire de Biochimie Théorique à Paris avec qui j'ai eu le plaisir de travailler et le CNRS qui a fourni les moyens d'accomplir ce travail.

 

VIDEO            CANAL  U               LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ] Précédente - Suivante
 
 
 
Google