ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

ORIGINE ET ÉVOLUTION DES GÉNOMES

 

Texte de la 667e conférence de l’Université de tous les savoirs donnée le 16 juin 2008
Patrick Forterre : « L’origine des génomes modernes »
Le génome renferme la très grande majorité des informations nécessaires à la vie des organismes sous la forme d’une ou de plusieurs molécules géantes d’acide nucléique. L’origine des génomes se confond donc avec l’origine de la vie elle-même ; or, pour le moment, nous ne savons absolument pas comment celle-ci est apparue sur notre planète. Nous ne le saurons peut-être même jamais, car l’origine de la vie est un événement historique, et les historiens du vivant, comme les autres, sont complètement dépendants des reliques fossiles pour déterminer les événements du passé. En absence de telles reliques, certains de ces évènements resteront toujours hors de notre portée. Je n’aborderais donc qu’en passant le problème de l’origine des tout premiers génomes, pour concentrer mon propos sur l’origine des génomes « modernes ». L’objectif est de reconstituer les dernières étapes de l’évolution qui ont abouti, il y a deux ou trois milliards d’années, aux êtres vivants et aux génomes tels que nous les connaissons actuellement. Cet objectif est moins ambitieux que celui de résoudre le problème mythique de nos origines, mais il est beaucoup plus réaliste (bien que toujours très ardu) et surtout, des progrès considérables ont été faits dans ce domaine ces dernières années, tout d’abord grâce aux avancées des connaissances en biologie moléculaire, et plus récemment, grâce au séquençage des génomes.
Les génomes modernes : cellules et virus
Passons tout d’abord en revue les génomes actuels ; ils présentent à la fois une grande uniformité et une grande diversité. Les génomes de tous les organismes sont constitués par des molécules géantes d’acides nucléiques. Ces molécules sont des polymères linéaires formés par l’association de briques élémentaires, appelés nucléotides, constitués d’une base aminée, d’un sucre, et d’un acide phosphorique (Figure 1). On distingue deux types d’acides nucléiques, l’ARN, acide ribonucléique, dont le sucre est le ribose (découvert au Rockfeller Institute of Biochemistry) et l’ADN, acide désoxyribonucléique, dont le sucre est le désoxyribose. 
Les génomes de tous les organismes cellulaires sont constitués d’ADN sous forme dite « double-chaîne » dans laquelle deux polymères linéaires de nucléotides sont enroulés l’un autour de l’autre pour former la fameuse « double hélice ». L’ADN est formé par la polymérisation de quatre nucléotides distincts qui se caractérisent par quatre bases aminées différentes correspondant aux lettres A (adénine), T (thymine) G (guanine) et C (cytosine). Leur disposition linéaire dans la molécule d’ADN détermine le message génétique et les quatre lettres ATGC forment ce que l’on appelle parfois l’alphabet du vivant. Pour la diversité, l’ADN génomique des organismes cellulaires peut se présenter sous formes de molécules linéaires ou circulaires. Tous les organismes dit « eucaryotes » dont les cellules possèdent un noyau, et dont les gènes sont souvent morcelés en régions codantes et non codantes, ont des ADN linéaires, localisés à l’intérieur des chromosomes. Par contre, la plupart des organismes dont les cellules n’ont pas de noyau, Archées et Bactéries, traditionnellement appelés « procaryotes » (noyau primitif) ont des ADN circulaires – la double hélice d’ADN étant refermée sur elle-même. 
La diversité des génomes est beaucoup plus grande dans le cas des organismes viraux. Si les génomes de nombreux virus sont composés d’ADN double brins, linéaire ou circulaire, tout comme les génomes cellulaires ; d’autres virus ont un génome composé d’un seul brin d’ADN circulaire, et d’autres encore, très nombreux, ont un génome composé d’un ou de deux brins d’ARN linéaire. L’ARN ressemble beaucoup à l’ADN, avec toutefois deux différences majeures, le désoxyribose est remplacé par le ribose, un sucre apparenté, et l’une des quatre bases aminées, la thymine (T), est remplacée par une autre base, l’uracile (U) (Figure 1). 
Les virus ne doivent pas être oubliés lorsque nous parlons de l’origine des génomes et de l’origine de la vie en général. Contrairement à une vision largement répandue, je pense (et c’est une idée de plus en plus partagée) que les virus sont bien des êtres vivants à part entière. Didier Raoult et moi-même avons ainsi proposé récemment de diviser le monde vivant en deux grands groupes : les organismes cellulaires, dont les génomes codent pour des ribosomes, et les organismes viraux, dont les génomes codent pour des capsides. Les ribosomes sont des complexes macromoléculaires, constitués de protéines et d’ARN, qui permettent aux organismes cellulaires de fabriquer leurs protéines. Les virus, qui ne possèdent pas de ribosomes, fabriquent leurs protéines en parasitant des organismes cellulaires pour avoir accès à leurs ribosomes. Ils se multiplient en produisant de nombreuses copies de leurs génomes qui sont empaquetés sous forme de virions. La capside, caractéristique des organismes viraux, correspond à la coque protéique qui protège le génome viral au sein du virion et permet sa dissémination dans la nature.
Comment ces deux formes de vie, organismes produisant des ribosomes et organismes produisant des capsides, sont-elles apparues ? Pourquoi existe-il des génomes à ADN, et d’autres à ARN ? Est-il possible d’imaginer des formes de vie plus anciennes qui auraient donné naissance aux formes de vie actuelles ? Voilà le type de questions auxquelles un petit nombre de chercheurs de par le monde essaient d’apporter des réponses. 
Le monde à ARN
Si les génomes actuels sont composés d’ARN ou d’ADN, quels sont ceux qui sont apparus en premier ? Tous les évolutionnistes sont aujourd’hui d’accord sur la réponse à cette question : l’ARN a précédé l’ADN au cours de l’évolution. Cette idée s’est progressivement imposée depuis une trentaine d’année pour toute une série de raisons. Notons tout d’abord que, sur le plan chimique, l’ADN est un ARN modifié. Le ribose, présent dans l’ARN, est un sucre « normal », comme le glucose ou le saccharose, il possède quatre fonctions chimiques alcool (OH) pour cinq atomes de carbone (Figure 1). Par contre, le désoxyribose (présent dans l’ADN) est un sucre atypique qui correspond à une forme dérivée du ribose ; il a perdu un atome d’oxygène et ne possède plus que trois fonctions alcools. De même, la thymidine (T), présente dans l’ADN, est une forme modifiée de l’uracile (U), présent dans l’ARN (un groupement méthyl, CH3, a été ajouté sur la molécule d’uracile) (Figure 2). Il semble donc logique de penser que la forme chimique normale, l’ARN, est apparue au cours de l’évolution avant la forme dérivée, l’ADN.
Le processus de transformation de l’ARN en ADN est en fait récapitulé par le métabolisme cellulaire ; celui-ci produit dans un premier temps les quatre ribonucléotides (rA, rU, rG, rC) qui vont s’assembler pour former l’ARN (Figure 3). Ces ribonucléotides vont ensuite être transformés en désoxynucléotides (dA, dT, dG, dC) précurseurs de l’ADN. Nous avons vu que les nucléotides (ribo ou désoxyribo) sont formés par l’addition d’un sucre, d’un acide phosphorique et d’une base azotée. Dans la molécule d’ARN, deux des quatre fonctions alcool du ribose sont utilisées pour associer entre eux les ribonucléotides par l’intermédiaire de l’acide phosphorique, et une troisième est utilisée pour fixer la base azotée. Il reste donc un oxygène libre pour chaque nucléotide, précisément celui qui est absent dans la molécule d’ADN qui ne possède donc pas d’atome d’oxygène libre (Figure 1). Nous verrons plus loin que cette différence chimique entre l’ADN et l’ARN est cruciale pour plusieurs raisons.
Dans les cellules actuelles, la transformation des ribonucléotides, précurseurs de l’ARN, en désoxyribonucléotides, précurseurs de l’ADN, se fait grâce à l’action séquentielle de deux enzymes, la première, appelée ribonucléotide réductase, va enlever l’un des oxygènes du ribose pour produire le désoxyribose (Figure 3). La deuxième, appelée thymidylate synthase, va ensuite transformer l’uracile du désoxyribonucléotide dU en thymidine, pour produire la lettre T (dT), spécifique de l’ADN (Figure 3). Ces deux modifications chimiques (dont nous verrons plus loin la signification), sont donc catalysées par des enzymes spécifiques, qui sont absoluement nécessaires pour passer de l’ARN à l’ADN. Il est donc encore une fois logique de penser que l’ARN a existé avant l’ADN (c’est-à-dire avant l’apparition des enzymes en question).
Un autre argument, tout à fait indépendant, va dans le même sens. Contrairement à l’ADN, l’ARN peut, dans certains cas, catalyser des réactions chimiques, exactement comme une enzyme. Les « enzymes » constituées d’ARN sont appelées ribozymes, pour les distinguer des enzymes classiques constituées de protéines. Un ribozyme est formé par un brin d’ARN qui se replier sur lui-même dans l’espace en trois dimension pour former une structure globulaire, avec un site actif capable de fixer une autre molécule pour la transformer (ce qui correspond à une catalyse chimique). L’ADN ne peut pas catalyser de telles réactions chimiques, car l’oxygène du ribose qui a été éliminé dans l’ADN intervient de façon décisive dans la catalyse par l’ARN. En effet, cet oxygène est le seul atome réactif présent dans le ribose. 
La découverte des propriétés catalytiques de l’ARN a résolu un problème qui a beaucoup perturbé les premiers biologistes moléculaires lorsqu’ils réfléchissaient à l’origine de la vie. Un problème qui rappelait celui de l’œuf et de la poule. Pour répliquer l’ADN, nous avons vu qu’il faut des protéines qui vont, entre autres, catalyser la formation des nouveaux brins (des polymérases). Or, ces protéines sont fabriquées sur la base de l’information génétique (le plan de montage) contenu dans l’ADN. Pour faire de l’ADN, il faut des protéines, pour faire des protéines il faut de l’ADN (pour faire un œuf il faut une poule et vice versa), comment s’en sortir ? L’ARN a fourni la solution : il est à la fois l’œuf et la poule, capable de porter une information génétique (tout comme l’ADN) et de catalyser des réactions chimiques (tout comme les protéines). On pouvait donc imaginer un « monde à ARN » ou des molécules d’ARN jouant le rôle de gènes, possédaient l’information pour fabriquer d’autres molécules d’ARN jouant le rôle d’enzymes, les secondes fabriquant les premières en se basant sur leur propre information. Pour certains auteurs, les virus à ARN seraient des reliques de ce monde à ARN.
On voit que dans le monde à ARN, non seulement l’ADN était absent, mais les protéines étaient facultatives. En fait, des travaux récents ont montré que les protéines telles que nous les connaissons à l’heure actuelle sont apparues après l’ARN. C’est la résolution de la structure du ribosome par cristallisation aux rayons X, au début des années 2000, qui a permis d’aboutir à cette conclusion. Cette structure a montré que l’association des acides aminés en longues chaînes linéaires, pour former les protéines, est catalysée par l’ARN du ribosome. Autrement dis, le ribosome est un ribozyme i Du coup, les protéines modernes n’ont pas pu apparaître avant l’ARN, puisque leur formation dépend d’une molécule d’ARN. 
A ce stade, nous avons beaucoup avancé dans notre reconstitution du passé. Nous pouvons en effet diviser l’histoire du vivant sur notre planète en trois périodes : le monde à ARN avant l’invention des protéines modernes (que j’ai tendance à appeler le premier âge du monde à ARN, en référence à JR Tolkien), le monde à ARN/Protéine, avant l’invention de l’ADN (le deuxième âge du monde à ARN) et le monde actuel (le troisième age) avec son ménage à trois : ARN, protéines et ADN (Figure 3).
Comment sont apparus les premiers génomes à ARN ? C’est la question qui nous rapproche le plus des origines de la vie, et, bien évidemment, c’est celle dont nous ignorons encore la réponse ! L’origine des premiers ribonucléotides (les briques de l’ARN) reste mystérieuse, personne n’a encore réussi à les produire en laboratoire. Devant cette difficulté, certains chercheurs ont avancé l’idée selon laquelle l’ARN aurait été précédé par une autre macromolécule, plus simple, mais également capable de porter l’information génétique. Plusieurs candidats ont été proposés pour ces ancêtres de l’ARN ; mais, au final, ils ne semblent pas devoir être plus faciles à produire en conditions prébiotiques (au laboratoire) que l’ARN lui-même. Par ailleurs, quelques progrès ont été faits récemment dans la synthèse artificielle du ribose. On en revient donc plutôt aujourd’hui à l’idée d’une origine basée sur l’ARN. 
Toutefois, l’idée d’un monde originel uniquement peuplé de molécules d’ARN est généralement abandonnée. Les premières molécules d’ARN, sans doute très courtes, étaient probablement déjà associées à des acides-aminés. Ces derniers, tout au moins les plus simples d’entre eux, sont en effet assez faciles à fabriquer en conditions prébiotiques ; ils sont même présents dans l’espace interstellaire. La synthèse des premiers ribonucléotides, et leur assemblage en petits ARN, a pu être catalysé par des petites protéines « anciennes », elles-mêmes fabriquées par des mécanismes chimiques (et non biologiques). Ces premières synthèses ont pu être accélérées par des catalyseurs minéraux, et l’énergie nécessaire à pu être fournie par des polyphosphates, présent dans les milieux volcaniques. Le tout a pu se produire au sein de vésicules lipidiques, qui ont permis de concentrer les acteurs de ce premier bricolage moléculaire. 
Des chercheurs américains ont montré récemment que l’addition d’ARN à des vésicules lipidiques leur confère des propriétés inattendues ; mises en présence de vésicules « vides », les vésicules à ARN capturent les lipides de ces dernières et grossissent à leur dépend, ce qui peut s’apparenter à une amorce de sélection naturelle ! Il a certainement fallu une très longue période évolutive (et une compétition féroce) au cours du premier age du monde à ARN, pour passer de ces premières vésicules (proto-cellules) aux cellules à ARN qui ont hébergé l’ancêtre de nos ribosomes modernes, c’est à dire un ARN capable de fabriquer des protéines en lisant le message porté par un autre ARN (dans nos cellules modernes, c’est toujours un ARN, copie de l’ADN, l’ARN messager, qui vient porter le message de ce dernier aux ribosomes). 
Les enzymes protéiques, composées de vingt acides aminés différents, aux propriétés chimiques variées, sont des catalyseurs beaucoup plus efficaces que les ribozymes à ARN. On comprend donc bien pourquoi elles ont progressivement remplacé les ribozymes comme catalyseurs dans la plupart des réactions du métabolisme au cours du second age du monde à ARN. On pense que les premières protéines étaient de petite taille, de séquence plus ou moins aléatoire, et qu’elles servaient principalement à stabiliser les ribozymes ou à augmenter le répertoire de leurs activités catalytiques. Au moment où l’ADN est apparu, on n’en était plus là, des protéines de grandes tailles, synthétisées avec une grande précision, devaient être présentes dans les cellules à ARN de cette époque. Nous pouvons l’affirmer, car les protéines qui sont nécessaires pour passer de l’ARN à l’ADN, ribonucléotide réductase et thymidylate synthases, sont de telles enzymes, complexes et précises. C’est particulièrement vrai pour les ribonucléotides réductases. Ces enzymes utilisent un mécanisme réactionnel très complexe pour enlever l’oxygène libre du ribose. Les enzymologistes qui étudient ces protéines considèrent que cette réaction n’a jamais pu être catalysée par un ribozyme, car elle fait intervenir un groupement chimique très réactif qui aurait attaqué et inactivé la molécule d’ARN formant le ribozyme. L’ADN n’a donc pu apparaître qu’après une longue période d’évolution du deuxième age du monde à ARN, après l’apparition des enzymes modernes telles que nous les connaissons aujourd’hui. 
Une autre réflexion nous conduit à la même conclusion. Les cellules à ARN de l’époque devaient déjà posséder toutes les enzymes des voies métaboliques complexes qui aboutissent aux ribonucléotides (AUGC) puisque, comme nous l’avons vu, les précurseurs de l’ADN sont formés à partir des précurseurs de l’ARN (Figure 3). Les cellules à ARN de la fin du deuxième âge devaient donc être très élaborées. Cette idée est difficile à admettre pour beaucoup de biologistes qui pensent que l’ARN est une molécule trop instable pour pouvoir porter une information suffisante pour la construction d’une cellule complexe. Ces biologistes se basent pour en arriver à cette conclusion sur l’observation des virus à ARN actuels qui ont tous de petits génomes, et qui répliquent ces génomes en faisant un assez grand nombre d’erreurs. Les plus grands génomes à ARN modernes connus, ceux du virus du SRAS par exemple, ne sont formés en effet que de 30 000 ribonucléotides environ, contre 160 000 désoxyribonucléotides pour le plus petit génome cellulaire connu. Je pense toutefois pour ma part que les virus à ARN actuels ne sont pas de bons modèles lorsque l’on essaye de se représenter les cellules du monde à ARN. Les virus à ARN modernes ont intérêt à répliquer leurs génomes de façon imprécise afin de muter à grande vitesse pour échapper aux défenses immunitaires de leurs hôtes. Des chercheurs ont toutefois montré que l’on pouvait modifier leurs enzymes en laboratoire pour les forcer à fabriquer de l’ARN avec une grande fidélité. Il ne faut pas oublier non plus que les virus à ARN produisent des protéines aussi complexes que les virus (ou les cellules) à ADN. 
Il est vrai que l’ADN est plus stable que l’ARN, en effet, l’oxygène libre du ribose présent dans l’ARN, très réactif, peut parfois s’attaquer aux liaisons entre nucléotides, ce qui aboutit à casser en deux la molécule d’ARN. Je pense toutefois que l’on a tendance à surestimer l’instabilité de la molécule d’ARN. Chez les Eucaryotes, dont les gènes possèdent souvent de nombreuses régions non codantes, les gènes peuvent être transcrit en très longues molécules d’ARN (plusieurs millions de ribonucléotides) qui sont suffisamment stables pour rester présentes plusieurs jours dans nos cellules. Il semble donc tout à fait envisageable d’imaginer un monde de cellules complexes dont les génomes étaient constitués de molécules d’ARN. 
A quoi ressemblait le génome des cellules du monde à ARN ? Était-il constitué de molécules d’ARN simple ou double brins, en un seul morceau ou fragmenté comme chez certains virus modernes à ARN ? Je pense pour ma part que différents types cellulaires devaient sans doute co-exister à cette époque, avec différents types de génomes à ARN. Il nous faut sans doute imaginer toute une biosphère peuplée de cellules à ARN, et déjà composé de proies, de prédateurs et de parasites engagés dans une lutte sans merci dominée par la sélection naturelle. L’origine des virus pourrait dater de cette époque. Les premiers virus à ARN ont pu dériver de cellules à ARN parasites qui ont perdu leur propre capacité à fabriquer leurs protéines et sont devenus ainsi dépendants de leur cellule à ARN hôte. Ils ont pu au contraire dériver de fragments génomiques à ARN qui se sont autonomisés pour devenir infectieux. Dans les deux cas, l’étape clef dans l’origine des virus a été l’apparition des capsides permettant la formation de virions pour le transfert des gènes viraux d’une cellule à l’autre. 
L’origine de l’ADN
Comment l’ADN est-il apparu dans cette biosphère ancestrale de cellules à ARN complexes accompagnées de leurs virus ? Pourquoi, au bout du compte, l’ARN a-t-il été remplacé par l’ADN en tant que forme unique de génome cellulaire ? Pendant longtemps, la réponse à cette question semblait aller de soi pour les biologistes moléculaires ; l’ADN avait remplacé l’ARN parce qu’il est plus stable (grâce à la perte de l’oxygène libre du ribose) et parce qu’il peut-être réparé plus facilement, grâce au remplacement de la lettre U par la lettre T. Ce dernier point mérite une petite explication. Tous les jours, une réaction chimique se produit spontanément dans nos cellules, qui transforme au hasard et de façons spontanées certaines lettres C (cytosine) en U (uracile) (Figure 2). Des U apparaissent donc sporadiquement dans l’ARN et l’ADN. Ces transformations de C en U vont entraîner des mutations qui seront la plupart du temps nocives. Or nos cellules possèdent un mécanisme moléculaire sophistiqué capable de reconnaître les U dans la molécule d’ADN (ils n’ont rien à y faire) et de corriger l’erreur pour remettre un C à la place. Bien sûr, cela n’est possible que pour un génome à ADN. Dans un génome à ARN, le mécanisme moléculaire de réparation que je viens d’évoquer n’aurait aucun moyen de reconnaître un mauvais U (issu d’une modification d’un C) d’un U bien à sa place (Figure 2).
La stabilité intrinsèque des génomes à ADN, et la possibilité de corriger les mutations de C vers U, ont eu une conséquence très importante pour tout le reste de l’évolution. Ils ont rendu possible l’augmentation de la taille des génomes à ADN. En effet, la quantité d’information que peut porter un génome est directement proportionnelle au degré de fidélité avec laquelle cette information est reproduite. Or, cette augmentation de la taille de génomes était nécessaire pour que l’évolution biologique produise des organismes de plus en plus complexes, jusqu’à l’homme, « aboutissement de l’évolution ! ». L’invention de l’ADN a donc constitué un progrès indéniable, et, pour beaucoup, cette constatation servait aussi d’explication, le progrès n’est-il pas inéluctable ? Je caricature à peine, pour de nombreux biologistes moléculaires peu au fait des mécanismes de l’évolution, l’apparition de l’ADN était une nécessité, ce n’était pas vraiment la peine de chercher à comprendre pourquoi et comment il était apparu en premier lieu. 
Et pourtant les choses ne sont pas si simples, ce n’est pas pour que des organismes extraordinairement complexes se promènent sur la terre aujourd’hui que l’ADN est apparu. De même, ce n’est pas parce que les oiseaux ont besoin de plumes pour voler que leurs ancêtres, les dinosaures, avaient des plumes ! Si nous voulons vraiment comprendre l’origine des génomes à ADN, il faut comprendre quel avantage sélectif le remplacement de l’ARN en ADN a apporté au premier mutant à ADN chez qui cette transformation s’est produite. 
Certains biologistes pensent que la plus grande stabilité de l’ADN suffit à expliquer la sélection de ce premier mutant. Cela me paraît peu probable, nous avons vu que l’ARN n’est pas si instable que cela ; de plus la durée de vie (entre deux divisions) des cellules à ARN était sans doute assez faible. Il me semble donc difficile d’admettre que l’augmentation de la stabilité de son génome ait été suffisante pour donner au premier mutant à ADN un avantage décisif dans le combat pour l’existence. Par ailleurs, la taille de son génome n’a pas pu augmenter instantanément ! De même, si l’on réfléchit au passage de l’ADN contenant la lettre U à l’ADN moderne (qui a dû se produire dans un second temps), on réalise que le premier mutant possédant la lettre T ne pouvait pas posséder le mécanisme de réparation dont nous avons parlé plus haut qui permettait de reconnaître les U provenant de C dans l’ADN et de corriger l’erreur. L’évolution ne pouvait pas avoir mis en place un tel système, il aurait fallu qu’elle prévoie à l’avance l’apparition d’ADN-T ! 
Je pense donc que l’intérêt d’avoir un génome plus stable, et pouvant être réparé plus facilement, ne s’est manifesté que sur le long terme, lorsque des populations de cellules à ADN ont coexisté sur une longue période avec des populations de cellules à ARN. Il a fallu laisser du temps aux organismes à ADN pour que leurs génomes grandissent et pour qu’apparaisse chez certains d’entre eux un mécanisme de correction des mutations C vers U, mettant à profit l’absence de U dans l’ADN. Autrement dis, la possibilité pour les génomes à ADN d’augmenter leur taille n’explique pas pourquoi ils sont apparus, mais pourquoi, sur le long terme, ils ont permis aux cellules à ADN d’éliminer les cellules à ARN. Ce ne sont que des retombées (bénéfiques pour nous, c’est incontestable) de l’apparition de l’ADN. De même, le vol des oiseaux est une retombée du fait de posséder des plumes ; plumes dont le rôle devait être très différent chez les dinosaures de celui qu’elles ont acquit chez les oiseaux (les évolutionnistes parlent d’exaptation). 
L’hypothèse virale
J’ai proposé, il y a quelques années, une solution possible au problème de l’origine de l’ADN. Selon moi, le premier « mutant » à ADN aurait pu être un virus. En effet, les virus ont un intérêt évident à modifier chimiquement leur génome ; cela leur permet d’échapper aux mécanismes de défense des cellules qui visent à détruire le génome viral. De très nombreux virus modernes utilisent en effet cette stratégie. Par exemple, le bactériovirus T4, qui s’attaque à la bactérie bien connue Eschrichia coli, a modifié toutes les lettres C (cytosine) de son génome à ADN par les lettres HMC (hydroxymethyl-cytosine). L’enzyme virale qui réalise cette transformation est apparentée à l’une de celles qui modifient la lettre U en T chez tous les êtres vivants. Dans l’hypothèse virale pour l’origine de l’ADN, on voit bien que le premier mutant à ADN-U a immédiatement (au cours de son existence) obtenu un avantage sélectif immédiat sur ces congénères en se mettant à l’abri des enzymes cellulaires qui pouvaient dégrader son ARN. Le même phénomène a pu se produire pour la deuxième transition : un virus à ADN-U a obtenu un avantage immédiat en transformant son ADN-U en ADN-T, mettant ainsi son génome à l’abri des enzymes qui étaient apparues entre temps dans les cellules pour détruire l’ADN-U viral. On peut donc imaginer une période de l’évolution où des cellules à ARN étaient infectées par des virus dont les génomes étaient constitués soit d’ARN, soit d’ADN-U, soit d’ADN-T. Il faut noter à ce sujet, que certains virus actuels possèdent un génome à ADN-U, ces virus pourraient être des « fossiles vivants » qui témoignent de l’étape intermédiaire de la transition entre ARN et ADN (Figure 4).
Si le premier organisme à ADN était bien un virus, il reste à imaginer comment ce virus a pu obtenir les précurseurs (désoxyribonucléotides) nécessaires à la fabrication de cet ADN. On peut penser que la ribonucléotide réductase est tout d’abord apparue dans le conflit entre virus et cellules comme un moyen d’inactiver les ribonucléotides de l’adversaire en les transformant en produits inactifs (les déoxyribonucléotides). La polymérase à ARN d’un virus aurait alors aqui par mutation la capacité de polymériser ces déoxyribonucléotides, réalisant ainsi la copie de l’ARN viral en ADN (les rétrovirus actuels possèdent toujours une enzyme, appelée transcriptase inverse capable de réaliser ce type de réaction.) 
Pour moi, l’hypothèse d’une origine virale de l’ADN a le grand avantage d’expliquer pourquoi on observe aujourd’hui une grande diversité de mécanismes de réplication de l’ADN chez les virus et, en particulier, pourquoi de nombreux organismes viraux à ADN codent pour des enzymes de la réplication de l’ADN qui n’ont pas de parents proches (et parfois pas de parent du tout) chez les organismes cellulaires. En effet, si l’ADN est apparu en premier lieu dans le monde viral, l’évolution des mécanismes de réplication de l’ADN a du se produite dans un premier temps essentiellement dans cette virosphère ancestrale. Différentes protéines qui auparavant répliquaient l’ARN ont pu être recrutées indépendamment dans différentes lignées de virus à ADN pour répliquer ce dernier. Une grande variété de mécanisme de réplication de l’ADN et leurs protéines associées ont du ainsi s’élaborer progressivement dans la virosphère ancestrale. Par la suite, seul un sous-ensemble de tous ces mécanismes aurait été transmis aux organismes cellulaires, expliquant l’existence actuelle d’enzymes de la réplication que l’on ne trouve que chez les virus. 
Si l’ADN est apparu en premier lieu dans le monde viral, il faut imaginer comment il a pu être ensuite transféré aux cellules. Mon hypothèse préférée est celle d’un virus à ADN infectant de façon chronique une cellule à ARN, et qui aurait progressivement pris le contrôle de cette dernière. Ce virus aurait tout d’abord perdu sa capside (par mutation) et se serait retrouvé sous forme de plasmides (petit chromosome circulaire) dans la cellule à ARN. Il aurait ensuite capturé progressivement les gènes à ARN de son hôte, par transcription inverse, et se serait ainsi transformé en génome cellulaire à ADN. 
Le génome de LUCA et l’origine des trois domaines cellulaires
Dans le scénario que je viens d’évoquer, une question importante se pose, le transfert de l’ADN des virus aux cellules s’est-il produit avant ou après l’apparition du dernier ancêtre commun à tous les organismes cellulaires actuels (appelé LUCA en Anglais pour Last Universal Cellular Ancestor). Il a semblé pendant longtemps tout à fait évident que le génome de LUCA était constitué d’ADN double brins, comme ceux de tous les organismes cellulaires modernes. Cette certitude a été toutefois remise en question vers la fin du XXeme siècle, suite à la comparaison des premiers génomes séquencés, celui d’une bactérie pathogène de l’homme, Haemophilus influenzae et celui d’un Eucaryote, la levure de boulangerie, Saccharomyces cerevisiae. Il est en effet apparu que les enzymes qui permettent la formation des nouveaux brins d’ADN au moment de la division cellulaire (on parle de réplication de l’ADN) étaient complètement différentes chez ces deux organismes. Elles étaient si différentes qu’elles ne pouvaient pas descendre d’enzymes ancestrales communes qui auraient répliqué l’ADN chez leur dernier ancêtre commun. Selon l’une des hypothèses visant à expliquer cette observation, l’ADN et les enzymes qui le répliquent, seraient apparues deux fois indépendamment au cours de l’évolution, une fois dans la lignée conduisant aux Bactéries et une seconde fois dans la lignée conduisant aux Eucaryotes. Dans cette hypothèse, le génome de LUCA était encore un génome à ARN. 
Par la suite, il est apparu que les protéines de la réplication de l’ADN chez les Archées, le troisième domaine du vivant, étaient homologues de celles des Eucaryotes. Il existe donc deux types de protéines impliquées dans la réplication de l’ADN, un type bactérien et un type commun aux Archées et aux Eukaryotes. Si l’hypothèse virale de l’origine de l’ADN est correcte, deux transferts indépendants de l’ADN des virus aux cellules après LUCA pourraient expliquer cette observation, l’une dans la lignée bactérienne, l’autre dans une lignée commune aux eucaryotes et aux archées. On peut toutefois aussi imaginer un premier transfert avant LUCA et un second qui aurait remplacé les protéines de réplication ancestrales par de nouvelles protéines virales chez les Bactéries ou chez l’ancêtre des Archées et des Eucaryotes. Enfin, pourquoi la formation des génomes à ADN ne se serait-elle pas produite trois fois indépendamment, après LUCA ? Dans ce cas, les trois transitions des génomes à ARN vers les génomes à ADN auraient pu donner naissance aux trois domaines cellulaires actuels. Le transfert de l’ADN à partir de virus dont les génomes étaient très différents auraient ainsi abouti d’un côté aux génomes circulaires relativement simples des Archées et Bactéries, qui ressemblent en fait à de gros plasmides (certains plasmides actuels sont d’ailleurs beaucoup plus gros que les plus petits chromosomes bactériens) et de l’autre aux génomes complexes des eucaryotes, avec plusieurs chromosomes linéaires terminés par des structures curieuses appelées télomères. Il est difficile de choisir entre ces différents scénarios. Il existe en fait de nombreux points qui restent mystérieux ; par exemple, comment se fait-il que les protéines de réplication de l’ADN soient identiques chez les Archées et les Eucaryotes alors que leurs génomes sont si différents ? Nous avons ainsi en main plusieurs pièces d’un puzzle que nous avons encore du mal à rassembler. 
L’origine du noyau des cellules eucaryotes, qui renferme leurs génomes, reste un grand point d’interrogation. La encore, certains auteurs ont proposé récemment des hypothèses qui donnent aux virus le premier rôle dans cette histoire. Selon eux, un virus à ADN, apparenté au virus de la variole, serait à l’origine de leur noyau. Ces virus forment en effet dans les cellules qu’ils infectent des mini noyaux entourés d’une membrane construite selon le même principe que la membrane nucléaire (à partir des membranes intracellulaires du réticulum endoplasmique). La découverte récente du Mimivirus à relancé cette hypothèse, en effet ce virus géant, apparenté au virus de la variole, produit des usines virales qui ont la même taille que le noyau de la cellule qu’ils infectent (une amibe). Je pense pour ma part que les virus ont pu jouer un autre rôle, plus indirect, dans l’origine du noyau. Il est possible que celui-ci soit apparu en premier lieu pour protéger le génome cellulaire de l’attaque des virus. Peut-être une cellule (l’ancêtre des Eucaryotes) à-t-elle finalement réussi à retourner contre eux une stratégie d’origine virale, en transformant un mini noyau viral (destiné au départ à protéger l’ADN viral) en noyau cellulaire. La cellule eucaryote est en fait si compliquée, que je pense nécessaire de faire intervenir plusieurs gros virus pour expliquer son apparition. L’existence de multiples ADN et ARN polymérases nucléaires chez les Eucaryotes pourrait être une relique de ces multiples infections fondatrices.
Si les données de la génomique comparée n’ont pas encore permis de résoudre complètement l’énigme de l’origine des génomes, elles ont toutefois fait avancer le problème en soulevant de nouvelles questions, comme celle posé par l’existence de deux types de protéines de réplication dans le monde cellulaire. La biologie moléculaire a joué un rôle majeur en nous permettant de diviser l’histoire ancienne des génomes en plusieurs étapes bien définies: premier et deuxième âge du monde à ARN, apparition du monde à ADN. De façon inattendue pour beaucoup de biologistes, les virus, longtemps négligés par les évolutionnistes, se sont invités avec force dans ce débat. S’il s’avère qu’un, ou même plusieurs gros virus à ADN, sont à l’origine de notre génome, nous seront bien obligés de finir par considérer les organismes producteurs de capside avec un peu plus de respect, Le culte des ancêtre nous conduira peut-être à placer une photo de virus sur notre autel domestique.
Références
RAOULT, D and FORTERRE, P. Redefining viruses : lessons from Mimivirus Nature Reviews Microbiology. 6 :315-319 (2008)
FORTERRE, P. and GRIBALDO, S. The origin of modern terrestrial life The HFSP Journal, 1, 156-168 (2007)
FORTERRE, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5-16 (2006)
FORTERRE, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl. Acad. Sci. 103, 3669-3374 (2006)
FORTERRE, P. The two ages of the RNA world, and the transition to the DNA world : a story of viruses and cells. Biochimie. 87, 793-803 (2005)
FORTERRE, P.L’Origine du génome La Recherche, (2004)
FORTERRE, P Les virus ont-ils inventé l’ADN? Pour la Science, Juillet (2008)
FORTERRE, P. Microbes de l’enfer, Collection Regards, Edition Belin (2007)
Légendes des figures
Figure 1 : Structures chimiques schématiques du ribose, de l’ARN (un brin) et de l’ADN (un brin). Les traits représentent des liaisons chimiques. Les boules noires représentent des atomes de carbones, les atomes d’hydrogènes fixés aux carbones n’ont pas été représentés. Les flèches pointent vers la position de l’oxygène absent dans l’ADN
Figure 2 : Structures chimiques schématiques des bases dites pyrimidiques : C (cytosine), U (uracile) et T (thymine). Les boules noires représentent des atomes de carbones et les boules grises des atomes d’azote. Les atomes d’hydrogènes n’ont pas été représentés. Les flèches représentent des transformations chimiques ; A : déamination des cytosines, une réaction chimique spontanée qui transforme C en U, elle se produit en présence d’eau (lentement mais sûrement) chez les êtres vivants, B : transformation de U en T, cette transformation est catalysés par une enzyme, la thymidylate synthase, lorsque U est sous la forme du désoxyribonucléotide dU. Deux petites séquences d’ARN et d’ADN sont représentées en bas de la figure. Un changement de C vers U passe inaperçu dans l’ARN, mais pas dans l’ADN.
Figure 3 : Formation de l’ADN dans les cellules modernes et au cours de l’évolution des cellules ancestrales. Les flèches bleues indiquent des transformations enzymatiques catalysées par des protéines-enzymes.
Figure 4 : Les différentes étapes de la transition ARTN vers l’ADN dans l’hypothèse d’une origine virale de l’ADN. La flèche grise symbolise le transfert de l’ADN des virus aux cellules.

 

VIDEO             CANAL  U              LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

LA VIE DANS L'UNIVERS

 

Texte de la 2ème conférence de l'Université de tous les savoirs réalisée le 2 janvier 2000 par André Brack

La vie : origine et distribution possible dans l'Univers


Le passage de la matière inanimée à la vie se fit vraisemblablement dans l'eau il y a 4 milliards d'années lorsque apparurent les premières molécules capables de s'auto-reproduire et d'évoluer. Empédocle explique ainsi l'apparition de l'homme: des têtes sans jambes, des jambes sans têtes, des bras, des torses, se promenaient autrefois à la surface de la Terre. Un jour, par hasard, tous les éléments nécessaires à la constitution d'un individu complet se rencontrèrent et ainsi s'auto-organisa le premier homme. En transposant l'image d'Empédocle au niveau moléculaire, l'émergence de la vie sur Terre peut être comparée à l'élaboration spontanée d'un édifice moléculaire à partir de molécules éparses. Par le jeu du hasard, un certain nombre de molécules s'auto-organisèrent et formèrent une structure chimique capable d'assembler d'autres molécules pour générer une deuxième structure à son image, transmettant ainsi le plan de montage. Par suite de légères erreurs de montage, une structure plus apte à se reproduire apparut et devint l'espèce dominante. Quelle structure chimique ? Quel plan de montage? Avec quelles molécules ? Combien de molécules ? Pour pouvoir répondre à ces questions, les scientifiques portent leurs efforts dans trois directions : recréer l'acte chimique originel en tube à essais, retrouver des formes fossilisées de cet acte chimique originel et rechercher des formes de vie voisines sur d'autres corps célestes.
1/ Recréer la vie originelle en tube à essais
Les premières molécules auto-reproductrices, et leurs précurseurs, furent probablement des molécules organiques construites sur un squelette d'atomes de carbone. Les atomes de carbone présentent deux caractéristiques qui sont d'excellentes signatures du vivant. L'atome de carbone possède deux isotopes stables 12C et 13C. La transformation enzymatique du dioxyde de carbone et des carbonates en carbone organique par les plantes et les microorganismes privilégie systématiquement l'isotope 12 du carbone. D'autre part, l'atome de carbone occupe généralement le centre d'un tétraèdre. Lorsque les groupes d'atomes aux quatre sommets du tétraèdre sont différents, l'image du tétraèdre dans un miroir ne lui est pas superposable. Le carbone devient asymétrique. Il existe alors deux formes spéculaires non superposables, images l'une de l'autre dans un miroir, appelées énantiomères (du grec enantios, opposé). Les molécules biologiques n'utilisent qu'une des deux formes spéculaires. On dit qu'elles sont homochirales (du grec kheir, main). La vie terrestre viole le principe de parité: la vie et son image dans un miroir n'existent pas avec une égale probabilité. Une vie racémique (de racemus, raisin) qui utiliserait indifféremment et simultanément les deux énantiomères gauches et droits des molécules semble très improbable.
Les molécules carbonées ont pu être fabriquées dans l'atmosphère à partir de méthane. Cette hypothèse fut confortée par les expériences de simulation de Miller. Les géochimistes privilégient à présent une atmosphère primitive riche en dioxyde de carbone. Dans une telle atmosphère, la production des briques du vivant est peu efficace. Pour Günter Wächtershäuser, les molécules organiques primordiales se formèrent par réduction du dioxyde de carbone à partir de sulfures d'hydrogène et de fer. En laboratoire, ces deux sulfures et le dioxyde de carbone réagissent pour donner de l'hydrogène et une variété de composés carbonés soufrés. Dans certaines conditions, il se forme également des esters soufrés qui ont pu constituer, selon Christian de Duve, la principale source énergétique du monde vivant primitif.
Cependant, la température élevée, jusqu'à 350°C, est un sérieux handicap car les molécules organiques ne sont pas stables à ces températures. On peut envisager des phénomènes de trempe thermique en continu dans l'eau environnante à une température proche de 0°C. Cette hypothèse est en train d'être vérifiée en laboratoire.
La chimie organique est particulièrement active dans le milieu interstellaire. Les radioastronomes y ont identifié 83 molécules organiques différentes. Les comètes et les météorites ont pu apporter des quantités très importantes de molécules organiques extraterrestres. Huit des vingt acides aminés constituant les protéines ont été identifiés dans la météorite de Murchison. Récemment, John Cronin trouva un excès d'environ 9% d'énantiomères gauches pour certains acides aminés non protéiques présents dans cette météorite. La découverte récente d'un rayonnement infrarouge fortement polarisé dans la région de formation de l'étoile Orion OMC-1 suggère que le système solaire, pendant la phase d'accrétion, a pu être exposé à une forte polarisation circulaire, polarisation due à la diffraction du nuage de poussières. Une polarisation à des longueurs d'onde plus courtes aurait pu détruire les acides aminés droits et seuls les acides aminés gauches auraient été déposés à la surface de la Terre par les météorites, les comètes ou les grains interplanétaires.
Une intéressante collection de micrométéorites a été récemment extraite de la glace bleue de l'Antarctique et analysée par Michel Maurette. Dans la gamme allant de 50 à 100µm, environ 80% des grains, vraisemblablement d'origine cométaire, renferment de la matière organique (2% de carbone) et n'ont pas fondu lors de la traversée atmosphérique. Des acides aminés y ont été détectés. On peut estimer à environ 30.000 milliards de tonnes la quantité de carbone apportée par ces grains à la surface de la Terre pendant la phase de bombardement intense il y a 4 milliards. A titre de comparaison, cette quantité représente environ 30 fois la quantité de carbone recyclée dans la biomasse actuelle. Pour conforter l'hypothèse d'une importation d'acides aminés extraterrestres, nous avons mené avec le CNES et l'ESA des expériences spatiales en orbite basse à bord de deux satellites russes automatiques FOTON (10 jours) et de la station MIR (3 mois). Les études ont porté sur la stabilité des acides aminés dans l'espace (dégradation chimique et racémisation) et la polymérisation de dérivés d'acides aminés et de peptides. Les résultats montrent une bonne stabilité des acides aminés lorsqu'ils sont protégés des UV par des surfaces minérales.
L'unité du vivant contemporain et, en particuliers, l'universalité du plan de montage suggèrent que la structure chimique originelle ressemblait déjà à une cellule. A partir des petites molécules organiques, les chimistes se sont efforcés de reconstituer en laboratoire les trois familles de pièces indispensables au fonctionnement de la cellule. Ils ont réussi à reconstituer deux des trois familles de molécules et ont montré que l'eau joue un double rôle de solvant et de réactif chimique. Ils n'ont pas réussi à reconstituer le plan de montage (ARN et ADN).
Les chimistes estiment que la structure chimique originelle devait être plus simple qu'une cellule et qu'un monde d'ARN dans lequel les ARN, à l'image des ribozymes, auraient été capables non seulement de véhiculer l'information mais aussi d'exercer une activité catalytique à l'instar des enzymes. En effet, la synthèse spontanée de l'ARN dans les conditions de la Terre primitive apparaît comme très difficile, donc peu probable. La structure chimique originelle devait aussi être suffisamment simple et robuste pour pouvoir supporter les gros impacts météoritiques et cométaires et résister aux UV solaires qui, à l'époque, traversaient l'atmosphère sans être filtrés par l'ozone.
La reconstitution de la vie primitive en tube à essais est difficile car elle se heurte à la flèche du temps et à sa durée. A cause de la flèche du temps et de l'évolution, la vie primitive était nécessairement très différente de celle que nous connaissons aujourd'hui. A cause du facteur durée, la chimie en laboratoire ne pourra jamais reproduire strictement à l'identique les conditions de la chimie prébiotique. Les expériences permettent de conforter des hypothèses mais ne permettent pas de leur conférer une réalité historique indiscutable.
2/ Rechercher des formes fossilisées de la vie terrestre primitive
Les signatures des tout premiers systèmes vivants terrestres ont été effacés par l'histoire géologique turbulente de la Terre et en particulier par la tectonique de plaques qui fait passer la plaque océanique riche en sédiments sous la plaque continentale, la présence permanente de ruissellements d'eau, le rayonnement UV solaire non filtré par la couche d'ozone (l'oxygène était absent de l'atmosphère primitive), par l'oxygène produit ultérieurement en grande abondance par les systèmes vivants et par la vie elle-même lorsqu'elle a conquis l'ensemble de la planète. Les microorganismes fossiles les plus anciens ont été découverts en Australie par l'Américain William Schopf dans les stromatolithes fossilisés. Ils sont vieux de 3,465 milliards d'années. A cette époque, la vie microbienne était présente sous forme de cyanobactéries filamenteuses, vraisemblablement photoautotrophes, c'est-à-dire capables de fabriquer leurs constituants fondamentaux à partir du dioxyde de carbone atmosphérique. Cette vie primitive était déjà diversifiée puisque onze variétés (taxa) différentes ont été observées. Les roches sédimentaires les plus anciennes ont été trouvées au Sud-Ouest du Groënland. Les sédiments d'Isua datent de 3,8 milliards d'années, ceux d'Akilia de 3,85 milliards d'années. Ils témoignent de la présence permanente d'eau liquide, de dioxyde de carbone dans l'atmosphère et renferment des kérogènes, molécules organiques complexes. L'enrichissement en carbone 12 du carbone organique présent dans ces sédiments est troublant. L'enrichissement suggère, mais ne prouve pas, l'existence d'une activité photosynthétique, donc d'une vie primitive, il y a 3,8 milliards d'années. Ces maigres indices géologiques permettent de penser que la vie, à l'origine, était déjà fondée sur l'utilisation de l'eau et des molécules organiques mais ne permettent pas de comprendre le début de la vie terrestre.
3/ Rechercher au delà de la Terre une vie proche de la vie terrestre
S'il a suffit de quelques molécules pour démarrer la vie, son démarrage a dû être rapide et les chances d'apparition sur tout corps céleste présentant un environnement semblable à celui de la Terre primitive sont réelles. Chercher une vie extraterrestre, c'est d'abord rechercher la présence permanente d'eau liquide. Présente en surface, elle signale l'existence d'une atmosphère qui permet l'apport en douceur des molécules organiques par le biais des micrométéorites. Les molécules organiques peuvent également se former dans les sources chaudes sous-marines. Tout océan extraterrestre présentant les signes d'une activité hydrothermale constitue également un site biotique possible.
1) Sur Mars ?
Les observations faites par les missions martiennes Mariner 9, Viking 1 et 2, Mars Pathfinder et Mars Global Surveyor indiquent clairement que Mars a abrité dans sa jeunesse de l'eau liquide à sa surface d'une manière permanente. La présence permanente d'eau suppose une température constamment supérieure à 0°C, température atteinte probablement grâce à l'existence d'une atmosphère dense de dioxyde de carbone générant un effet de serre important. Grâce à cette atmosphère, la planète a pu accumuler des micrométéorites à sa surface à l'instar de la Terre. En 1976, les deux sondes Viking ne détectèrent ni molécules organiques ni vie à la surface de Mars sur une profondeur de quelques centimètres. En fait, le sol martien semble renfermer des oxydants puissants produits par photolyse dans l'atmosphère et/ou par des processus photochimiques au niveau du sol. La présence d'oxydants exclut toute accumulation de molécules organiques à la surface de la planète. Des calculs de simulation suggèrent que la diffusion des oxydants dans le sous-sol ne devrait pas dépasser une profondeur de 3m. L'absence de matière organique à la surface de Mars pourrait également être due à des processus de dégradation directe par les UV solaires, l'atmosphère martienne n'ayant pas de couche d'ozone protectrice. Cette décomposition par photolyse directe ne devrait toutefois affecter que la première dizaine de microns de la surface des grains du sol et des roches. Par contre, les météorites SNC, EETA 79001 et ALH 84001, très probablement d'origine martienne, renferment des molécules organiques (Brack et Pillinger, 1998). Même si les indices trouvés dans ALH 84001 sont trop ambigus pour conclure à l'existence passée d'une vie bactérienne sur Mars, les deux météorites martiennes témoignent de l'existence de molécules organiques dans le sol martien. Les ingrédients qui ont permis l'apparition de la vie sur Terre étaient probablement rassemblées sur Mars. Il est dès lors tentant de penser qu'une vie élémentaire de type terrestre ait pu apparaître et se développer sur la planète rouge. Les océans ont dû générer d'importants gisements sédimentaires. Ces sédiments constituent des sites privilégiés pour la recherche de vestiges des molécules organiques et des bactéries fossilisées à condition qu'ils soient à l'abri des rayons ultraviolets et des oxydants. Le programme martien de la NASA prévoit deux lancements à chaque créneau planétaire, tous les 26 mois à partir de 1996. En 1997, le robot martien Sojourner a analysé six sols et cinq roches autour du site d'atterrissage dans Ares Vallis. Les sols analysés sont tous identiques et très proches des sols analysés par les sondes Viking. Les roches, analysées sur quelques microns seulement, sont partiellement recouvertes de poussière du sol. La composition des roches rappelle celle des andésites terrestres (roches ayant subit plusieurs fusions) et se rapproche de celle de la croûte terrestre. Cependant, les résultats obtenus sont insuffisants pour pouvoir trancher entre une origine volcanique et sédimentaire. La NASA centre maintenant tout son programme sur le retour d'échantillons en 2005. Le CNES sera associé à cette mission et souhaite installer à la surface de Mars un laboratoire permettant le prélèvement par forage d'échantillons protégés des UV et des oxydants (gros rochers, proche sous-sol) et leur analyse in situ, organique, minérale et isotopique (la vie terrestre se distingue de la matière purement minérale par un enrichissement en isotope 12 du carbone par rapport à l'isotope 13 car la fixation enzymatique du dioxyde de carbone atmosphérique par les plantes et les microorganismes favorise systématiquement l'isotope léger du carbone). De son côté, l'Agence Spatiale Européenne a confié à un Groupe d'Exobiologie le soin de définir la station idéale pour la recherche de traces de vie sur Mars. La priorité a été donnée au prélèvement et à l'analyse sur place des échantillons prélevés pour y rechercher des molécules organiques et des bactéries fossilisées. Les échantillons seront prélevés dans le proche sous-sol sédimentaire à l'aide d'une foreuse installée sur la station fixe mais aussi dans les roches de surface à l'aide d'un petit véhicule automatique équipé d'une foreuse légère qui conférera une certaine mobilité au dispositif général. Une version simplifiée de la station d'analyse martienne, appelée Beagle 2 par le Britanique Colin Pillinger en hommage au bateau de Charles Darwin, pourrait même être embarquée dès 2003 sur la mission européenne Mars Express, actuellement en préparation.
2) Sous la glace d'Europe ?
Le vaisseau spatial Galiléo a fourni de très belles images d'Europe, l'une des lunes de Jupiter. En 1979 et 1980, la mission Voyager avait déjà photographié Europe et montré que sa surface était recouverte par de la glace entaillée de profondes crevasses. Les images de Galiléo montrent des blocs de banquise ayant pivoté sur eux-mêmes, vraisemblablement sur un sous-sol fluide. La surface présente peu de cratères d'impacts ce qui suggère un remodelage continu de la surface par des phénomènes cryovolcaniques ou tectoniques. Selon l'un des modèles proposés, il y aurait un océan d'eau liquide sous quelques dizaines de kilomètres de banquise. La chaleur nécessaire au maintien de l'eau à l'état liquide serait apportée par les fortes marées internes générées par les variations de l'important champ gravitationnel de Jupiter. Un transfert de chaleur du cSur planétaire vers la surface, semblable à celui des évents hydrothermaux des océans terrestres, constitue une autre source possible d'énergie thermique. Si l'eau liquide est présente sous la couche glaciaire, il est possible que cette eau contiennent des molécules organiques provenant des évents hydrothermaux. Une chimie organique prébiotique de type terrestre a donc pu s'y développer et conduire à l'apparition de la vie. Si Europe a maintenu une activité de marée et une activité hydrothermal sous-glaciaire, la vie bactérienne y est peut être encore active aujourd'hui. Europe apparaît de plus en plus comme un lieu privilégié du système solaire pouvant héberger de l'eau liquide et une vie bactérienne en activité. Des missions vers Europe sont actuellement à l'étude.
3) Au-delà du système solaire ?
Les radioastronomes ont démontré que la chimie organique est universelle. En effet, 83 molécules organiques ont été identifiées à ce jour dans les nuages denses de gaz et de poussières du milieu interstellaire. Mais existe-t-il d'autres niches susceptibles d'héberger de l'eau en dehors du système solaire? En septembre 1995, les Suisses Mayor et Queloz après un suivi systématique des vitesses d'une centaine d'étoiles à l'Observatoire de Haute Provence découvraient un corps de la taille moitié de celle de Jupiter en orbite autour de l'étoile 51 Pegase (la précision des instruments actuels ne permet de voir que des planètes dont la taille est voisine de celle de Jupiter). Toutefois, l'objet présumé serait très proche de l'étoile et aurait une température de 1500°C, température trop élevée pour la vie. Quatre mois plus tard, les Américains Marcy et Butler décrivaient deux objets ayant 2,8 et 6,4 fois la masse de Jupiter près des étoiles 70 Virgin dans la constellation de la Vierge et 47 Uma dans la constellation de la Grande Ours. Les objets sont situés plus loin de l'étoile. La planète 70 Vir, géante et probablement gazeuse, est peu propice à la vie. Elle pourrait, cependant, à l'instar de Jupiter et Saturne, avoir des satellites de la taille de la Terre avec des températures permettant la présence d'eau liquide. A ce jour, le catalogue compte 28 planètes géantes extrasolaires.
4/ Comment détecter une vie extraterrestre ?
L'enrichissement isotopique en carbone 12 et l'homochiralité des molécules biologiques sont certainement les signatures les plus remarquables de la vie terrestre. Grâce aux missions spatiales, les planètes du système solaire sont devenues accessibles à l'analyse organique, minérale et isotopique directement sur le terrain. L'examen minéralogique des roches permet d'identifier des structures minérales macroscopiques résultant de l'activité bactérienne (biominéraux comme, par exemple, les stromatolithes) mais aussi des microfossiles de bactéries. Enfin, la recherche d'anomalies dans l'environnement planétaire comme, par exemple, des teneurs particulièrement élevées en méthane dans l'atmosphère, permet de mettre en évidence une vie bactérienne active.
Pour les planètes extra-solaires, la recherche d'une forme de vie est plus difficile. L'atmosphère terrestre renferme en permanence 21% d'oxygène alors que les atmosphères des autres planètes du système solaire n'en renferment que des traces. La présence permanente d'oxygène est liée à la vie qui se développe à la surface de la Terre. La planète recherchée doit, par exemple, posséder de l'eau et de l'oxygène identifiable par sa raie caractéristique à 760 nm dans la spectre visible de la planète. Pour des raisons pratiques, il parait plus judicieux de rechercher la signature de l'ozone dans le spectre infrarouge à 9,6 µm. Pour distinguer le spectre de la planète de celui de l'étoile, un groupe d'astrophysiciens français animé par Alain Léger propose la construction d'un interféromètre spatial infrarouge à cinq télescopes. Le dispositif Darwin-IRSI est actuellement à l'étude à l'Agence Spatiale Européenne. La NASA étudie un dispositif semblable appelé mission TPF. Enfin, la détection d'un signal électromagnétique "intelligent" (SETI) apporterait la preuve indéniable de l'existence d'une vie extra-solaire. Le programme d'écoute mérite d'être soutenu même si, a priori, la probabilité pour qu'une vie bactérienne extra-solaire évolue vers des systèmes vivants exploitant l'électromagnétisme reste très faible. Nombreux sont les scientifiques qui pressentent que la vie bactérienne n'est pas restreinte à la Terre. Reste maintenant à le prouver par l'expérience. Voilà certainement un défi scientifique majeur pour l'an 2000.

 

VIDEO           CANAL  U           LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

MÉCANISME DE REPLIEMENT DES MOLÉCULES

 

Textede la 595ème conférencede l'Universitéde tous les savoirs prononcée le 17 juillet 2005


ParDidier Chatenay: « Le mécanisme de repliement des molécules »
Le thème de cette conférence vous fera voyager aux confins de plusieurs sciences : physique, chimie et biologie bien évidemment puisque les macromolécules dont nous parlerons sont des objets biologiques : des protéines.
Le plan de cet exposé sera le suivant :
- Quelques rappels sur la structure de la matière (atomes, liaisons chimiques, molécules, macromolécules).
- Qu'est-ce qu'une protéine (la nature chimique de ces macromolécules, leur mode de synthèse, leurs structures et leurs fonctions biologiques) ?
- Le problème du repliement (d'où vient le problème, paradoxe de Levinthal).
- Résolution du paradoxe et interactions inter intra moléculaires (échelles des énergies mises en jeu).
Rappels sur la structure de la matière.
La matière est constituée d'atomes eux-mêmes étant constitués d'un noyau (composé de particules lourdes : protons, chargés positivement, et neutrons non chargé) entouré d'un nuage de particules légères : les électrons chargés négativement. La taille caractéristique d'un atome est de 1 Angström (1 Angström est la dix milliardième partie d'un mètre ; pour comparaison si je prends un objet de 1 millimètre au centre d'une pièce, une distance dix milliards de fois plus grande représente 10 fois la distance Brest-Strasbourg).
Dans les objets (les molécules biologiques) que nous discuterons par la suite quelques atomes sont particulièrement importants.
Par ordre de taille croissante on trouve tout d'abord l'atome d'hydrogène (le plus petit des atomes) qui est le constituant le plus abondant de l'univers (on le trouve par exemple dans le combustible des fusées). L'atome suivant est le carbone ; cet atome est très abondant dans l'univers (on le trouve dans le soleil, les étoiles, l'atmosphère de la plupart des planètes. Il s'agit d'un élément essentiel comme source d'énergie des organismes vivants sous forme de carbohydrates). On trouve ensuite l'azote, constituant essentiel de l'air que nous respirons. L'atome suivant est l'oxygène, également constituant essentiel de l'air que nous respirons, élément le plus abondant du soleil et essentiel au phénomène de combustion. Le dernier atome que nous rencontrerons est le souffre que l'on trouve dans de nombreux minéraux, météorites et très abondants dans les volcans.
Les atomes peuvent interagir entre eux pour former des objets plus complexes. Ces interactions sont de nature diverse et donnent naissance à divers types de liaisons entre les atomes. Nous trouverons ainsi :
- La liaison ionique qui résulte d'interactions électrostatiques entre atomes de charges opposées (c'est par exemple ce type de liaison, qu'on rencontre dans le chlorure de sodium, le sel de table). Il s'agit d'une liaison essentielle pour la plupart des minéraux sur terre, comme par exemple dans le cas des silicates, famille à laquelle appartient le quartz.
- Un autre type de liaison est la liaison covalente. Cette liaison résulte de la mise en commun entre 2 atomes d'un électron ou d'une paire d'électrons. Cette liaison est extrêmement solide. Ce type de liaison est à l'origine de toute la chimie et permet de former des molécules (l'eau, le glucose, les acides aminés). Ces acides aminés sont constitués de carbone, d'azote, d'hydrogène et d'oxygène. Dans ces molécules on retrouve un squelette qu'on retrouve dans tous les acides aminés constitué d'un groupement NH2 d'un côté et COOH de l'autre ; la partie variable est un groupement latéral appelé résidu. Un exemple d'acide aminé est constitué par la méthionine qui d'ailleurs contient dans son résidu un atome de soufre. La taille caractéristique des distances mises en jeu dans ce type de liaison n'est pas très différente de la taille des atomes eux-mêmes et est de l'ordre de l'angström (1.5 Angström pour la liaison C-C, 1 Angström pour une liaison C-H).

Ces liaisons ne sont pas figées et présentent une dynamique ; cette dynamique est associée aux degrés de libertés de ces liaisons tels que par exemple un degré de liberté de rotation autour de l'axe d'une liaison C-C. Ces liaisons chimiques ont donc une certaine flexibilité et aux mouvements possibles de ces liaisons sont associés des temps caractéristiques de l'ordre de la picoseconde (mille milliardième partie de seconde) ; il s'agit de temps très rapides associés aux mouvements moléculaires.
A ce stade nous avons 2 échelles caractéristiques importantes :
- 1 échelle de taille : l'angström
- 1 échelle de temps : la picoseconde.
C'est à partir de cette liaison covalente et de petites molécules que nous fabriquerons des macromolécules. Un motif moléculaire, le monomère, peut être associé par liaison covalente à un autre motif moléculaire ; en répétant cette opération on obtiendra une chaîne constituée de multiples monomères, cette chaîne est une macromolécule. Ce type d'objets est courant dans la vie quotidienne, ce sont les polymères tels que par exemple :
- le polychlorure de vinyle (matériau des disques d'antan)
- le polytétrafluoroéthylène (le téflon des poêles)
- le polyméthacrylate de méthyl (le plexiglas)
- les polyamides (les nylons)
Quelle est la forme d'un objet de ce type ? Elle résulte des mouvements associés aux degrés de libertés discutés plus haut ; une chaîne peut adopter un grand nombre de conformations résultant de ces degrés de liberté et aucune conformation n'est privilégiée. On parle d'une marche aléatoire ou pelote statistique.
Les protéines
Quelles sont ces macromolécules qui nous intéressent particulièrement ici ? Ce sont les protéines qui ne sont rien d'autre qu'une macromolécule (ou polymère) particulière car fabriquée à partir d'acides aminés. Rappelons que ces acides aminés présentent 2 groupes présents dans toute cette famille : un groupe amine (NH2) et un groupe carboxyle (COOH) ; les acides aminés diffèrent les uns des autres par la présence d'un groupe latéral (le résidu). A partir de ces acides aminés on peut former un polymère grâce à une réaction chimique donnant naissance à la liaison peptidique : le groupement carboxyle d'un premier acide aminé réagit sur le groupement amine d'un deuxième acide aminé pour former cette liaison peptidique. En répétant cette réaction il est possible de former une longue chaîne linéaire.

Comme nous l'avons dit les acides amines diffèrent par leurs groupes latéraux (les résidus) qui sont au nombre de 20. On verra par la suite que ces 20 résidus peuvent être regroupés en familles. Pour l'instant il suffit de considérer ces 20 résidus comme un alphabet qui peut donner naissance à une extraordinaire variété de chaînes linéaires. On peut considérer un exemple particulier : le lysozyme constitué d'un enchaînement spécifique de 129 acides aminés. Une telle chaîne comporte toujours 2 extrémités précises : une extrémité amine et une extrémité carboxyle, qui résultent de la réaction chimique qui a donné naissance à cet enchaînement d'acides aminés. Il y a donc une directionnalité associée à une telle chaîne. La succession des acides aminés constituant cette chaîne est appelée la structure primaire. La structure primaire d'une protéine n'est rien d'autre que la liste des acides aminés la constituant. Pour revenir au lysozyme il s'agit d'une protéine présente dans de nombreux organismes vivants en particulier chez l'homme où on trouve cette protéine dans les larmes, les sécrétions. C'est une protéine qui agit contre les bactéries en dégradant les parois bactériennes. Pour la petite histoire, Fleming qui a découvert les antibiotiques, qui sont des antibactériens, avait dans un premier temps découvert l'action antibactérienne du lysozyme ; mais il y a une grosse différence entre un antibiotique et le lysozyme. Cette molécule est une protéine qu'il est difficile de transformer en médicament du fait de sa fragilité alors que les antibiotiques sont de petites molécules beaucoup plus aptes à être utilisées comme médicament.
Pour en revenir au lysozyme, présent donc dans les organismes vivants, on peut se poser la question de savoir comment un tel objet peut être fabriqué par ces organismes. En fait, l'information à la fabrication d'un tel objet est contenue dans le génome des organismes sous la forme d'une séquence d'acide désoxyribonucléique (ADN) constituant le gène codant pour cette protéine. Pour fabriquer une protéine on commence par lire l'information contenue dans la séquence d'ADN pour fabriquer une molécule intermédiaire : l'ARN messager, lui-même traduit par la suite en une protéine. Il s'agit donc d'un processus en 2 étapes :
- Une étape de transcription, qui fait passer de l'ADN à l'ARN messager,
- Une étape de traduction, qui fait passer de l'ARN messager à la protéine.
Ces objets, ADN et ARN, sont, d'un point de vue chimique, très différents des protéines. Ce sont eux-mêmes des macromolécules mais dont les briques de base sont des nucléotides au lieu d'acides aminés.
Ces 2 étapes font intervenir des protéines ; l'ARN polymérase pour la transcription et le ribosome pour la traduction. En ce qui concerne la transcription l'ARN polymérase se fixe sur l'ADN, se déplace le long de celui-ci tout en synthétisant l'ARN messager. Une fois cet ARN messager fabriqué un autre système protéique, le ribosome, se fixe sur cet ARN messager, se déplace le long de cet ARN tout en fabriquant une chaîne polypeptidique qui formera la protéine. Il s'agit d'un ensemble de mécanismes complexes se produisant en permanence dans les organismes vivants pour produire les protéines.
Ces protéines sont produites pour assurer un certain nombre de fonctions. Parmi ces fonctions, certaines sont essentielles pour la duplication de l'ADN et permettre la reproduction (assure la transmission à la descendance du patrimoine génétique). Par ailleurs ce sont des protéines (polymérases, ribosomes) qui assurent la production de l'ensemble des protéines. Mais les protéines assurent bien d'autres fonctions telles que :
- Des fonctions de structure (la kératine dans les poils, les cheveux ; le collagène pour former des tissus),
- Des fonctions de moteurs moléculaires (telles que celles assurées par la myosine dans les muscles) ; de telles protéines sont des usines de conversion d'énergie chimique en énergie mécanique.
- Des fonctions enzymatiques. Les protéines de ce type sont des enzymes et elles interviennent dans toutes les réactions chimiques se déroulant dans un organisme et qui participent au métabolisme ; c'est par exemple le cas du mécanisme de digestion permettant de transformer des éléments ingérés pour les transformer en molécules utilisables par l'organisme.
Pour faire bref toutes les fonctions essentielles des organismes vivants (la respiration, la digestion, le déplacement) sont assurés par des protéines.
A ce stade nous avons donc introduit les objets essentiels de cet exposé que sont les protéines. Pour être complet signalons que la taille de ces protéines est très variable ; nous avons vu le lysozyme constitué d'une centaine d'acides aminés mais certaines protéines sont plus petites et certaines peuvent être beaucoup plus grosses.
Nous allons maintenant pouvoir aborder le problème de la structure et du repliement de ces objets.
La structured'une protéine
Tout d'abord quels sont les outils disponibles pour étudier la structure de ces objets. Un des outils essentiels est la diffraction des rayons X. L'utilisation de cet outil repose sur 2 étapes. La première (pas toujours la plus facile) consiste à obtenir des cristaux de protéines. Ces protéines, souvent solubles dans l'eau, doivent être mises dans des conditions qui vont leur permettre de s'arranger sous la forme d'un arrangement régulier : un cristal. C'est ce cristal qui sera utilisé pour analyser la structure des protéines qui le composent par diffraction des rayons X. A partir du diagramme de diffraction (composé de multiples tâches) il sera possible de remonter à la position des atomes qui constituent les protéines. Un des outils essentiels à l'heure actuelle pour ce type d'expérience est le rayonnement synchrotron (SOLEIL, ESRF).
Il existe d'autres outils telle que la résonance magnétique nucléaire qui présente l'avantage de ne pas nécessiter l'obtention de cristaux mais qui reste limitée à l'heure actuelle à des protéines de petite taille.
Finalement à quoi ressemble une protéine ? Dans le cas du lysozyme on obtient une image de cette protéine où tous les atomes sont positionnés dans l'espace de taille typique environ 50 Angströms. Il s'agit d'un cas idéal car souvent on n'obtient qu'une image de basse résolution de la protéine dans laquelle on n'arrive pas à localiser précisément tous les atomes qui la constituent. Très souvent cette mauvaise résolution est liée à la mauvaise qualité des cristaux. C'est l'exemple donné ici d'une polymérase à ARN. Néanmoins on peut obtenir des structures très précises même dans de le cas de gros objets.
Repliement,dénaturation et paradoxede Levinthal
Très clairement on voit sur ces structures que les protéines sont beaucoup plus compactes que les chaînes désordonnées mentionnées au début. Cette structure résulte du repliement vers un état compact replié sur lui-même et c'est cet état qui est l'état fonctionnel. C'est ce qui fait que le repliement est un mécanisme extrêmement important puisque c'est ce mécanisme qui fait passer de l'état de chaîne linéaire déplié à un état replié fonctionnel. L'importance de ce repliement peut être illustrée dans le cas d'un enzyme qui permet d'accélérer une réaction chimique entre 2 objets A et B ; ces 2 objets peuvent se lier à l'enzyme, ce qui permet de les approcher l'un de l'autre dans une disposition où une liaison chimique entre A et B peut être formée grâce à l'environnement créé par l'enzyme. Tout ceci ne peut se produire que si les sites de fixation de A et B sont correctement formés par le repliement de la longue chaîne peptidique. C'est la conformation tridimensionnelle de la chaîne linéaire qui produit ces sites de fixation.
Il y a une notion associée au repliement qui est la dénaturation. Nous venons de voir que le repliement est le mécanisme qui fait passer de la forme dépliée inactive à la forme repliée active ; la dénaturation consiste à passer de cette forme active repliée à la forme inactive dépliée sous l'influence de facteurs aussi variés que la température, le pH, la présence d'agents dénaturants tels que l'urée.
La grande question du repliement c'est la cinétique de ce phénomène. Pour la plupart des protéines où des expériences de repliement-dénaturation ont été effectuées le temps caractéristique de ces phénomènes est de l'ordre de la seconde. Comment donc une protéine peut trouver sa conformation active en un temps de l'ordre de la seconde ?
Une approche simple consiste à développer une approche simplifiée sur réseau ce qui permet de limiter le nombre de degrés de liberté à traiter ; on peut par exemple considérer une protéine (hypothétique) placée sur un réseau cubique. On peut considérer le cas d'une protéine à 27 acides aminés. On peut alors compter le nombre de conformations possibles de telles protéines ; à chaque acide aminé on compte le nombre de directions pour positionner le suivant. Sur un réseau cubique à chaque étape nous avons 6 possibilités ce qui fera pour une chaîne de 27 acides aminés 627 possibilités. Cela n'est vrai qu'à condition d'accepter de pouvoir occuper 2 fois le même site du réseau ce qui, bien sur, n'est pas vrai dans la réalité ; si on tient compte de cela on arrive en fait à diminuer quelque peu ce nombre qui sera en fait 4,727. Plus généralement pour une chaîne de N acides aminés on obtiendra 4,7N possibilités. Si on part d'une chaîne dépliée on peut alors se dire que pour trouver le « bon état replié » il suffit d'essayer toutes les conformations possibles. Cela va s'arrêter lorsqu'on aura trouvé une conformation stable, c'est-à-dire une conformation énergétiquement favorable. Pour passer d'une conformation à une autre il faut au moins un mouvement moléculaire élémentaire dont nous avons vu que l'échelle de temps caractéristique est la picoseconde (10-12 seconde). I faut donc un temps total (afin d'explorer toutes les conformations) :
Trepliement= 4,7N * Tmoléculaire.
Si on prend N=100, Tmoléculaire= 1picoseconde=10-12seconde, alors :

Trepliement= 1055 secondes !!!
C'est beaucoup car on cherche 1 seconde et on trouve quelque chose de beaucoup plus grand que l'âge de l'univers (de l'ordre de 1027 secondes). Avec cette approche il faut plus de temps à une protéine pour se replier et met plus de temps que l'âge de l'univers.
C'est le paradoxe de Levinthal.
Comment s'en sortir ?
Il faut revenir aux acides aminés et en particulier aux résidus qui permettent de différencier les 20 acides aminés. Ces 20 acides aminés peuvent se regrouper en famille selon la nature de ce résidu.
Une première famille est constituée par les acides aminés hydrophobes. Qu'est ce qu'un acide aminé hydrophobe ou l'effet hydrophobe ? Il s'agit de l'effet qui fait que l'eau et l'huile ne se mélangent pas. Si sur une chaîne on dispose des acides aminés hydrophobes alors ceux-ci vont faire « collapser » la chaîne afin de se regrouper et de se « protéger » de l'eau, tout comme l'eau et l'huile ont tendance à ne pas se mélanger. Ce mécanisme tend à créer ainsi une poche hydrophobe qui permet à ces acides aminés d'éviter l'eau. On commence ainsi à avoir une amorce de solution au paradoxe de Levinthal : la protéine ne va essayer que toutes les conformations, elle va commencer à utiliser dans un premier temps ce mécanisme qui à lui seul va éliminer un grand nombre de conformations possibles.
Mais il y a d'autres familles d'acides aminés et parmi celles-ci celle des acides aminés chargés (+ ou -) qui vont être soumis aux interactions électrostatiques classiques (les charges de même signe se repoussent, les charges de signe contraire s'attirent). Ainsi, si le long de la chaîne nous avons 2 acides aminés de signe opposé ils vont avoir tendance à s'attirer ; cet effet a là encore tendance à diminuer le nombre de conformations possibles pour la chaîne.
Dernière famille, un peu plus complexe mais au sein de laquelle les interactions sont de même nature que pour les acides aminés chargés, à savoir des interactions de type électrostatique. Cette famille est constituée par les acides aminés polaires qui ne portent pas de charge globale mais au sein desquels la distribution des électrons est telle qu'il apparaît une distribution non uniforme de charges ; cette asymétrie dans la répartition des charges va permettre par exemple de créer des liaisons hydrogènes entre molécules d'eau (interactions qui donnent à l'eau des propriétés particulières par rapport à la plupart des autres liquides).
Au total l'image initiale que nous avions des chaînes polypeptidiques doit être un peu repensée et l'on doit abandonner l'idée d'une marche au hasard permettant d'explorer toutes les conformations possibles puisque les briques de base de ces chaînes interagissent fortement les unes avec les autres. On peut ainsi récapituler l'ensemble des interactions au sein d'une chaîne (effet hydrophobe, liaison ionique, liaison hydrogène, sans oublier un mécanisme un peu particulier faisant intervenir des acides aminés soufrés qui peuvent former un pont disulfure ; il s'agit néanmoins d'une liaison un peu moins générale que les précédentes et qui par ailleurs est beaucoup plus solide).
La structure globale de nos protéines résulte de la présence de toutes ces interactions entre les acides aminés présents le long de la chaîne. Lorsque l'on regarde attentivement de telles structures on observe la présence d'éléments répétitifs assez réguliers : hélices, feuillets. Ces feuillets sont des structures locales au sein desquelles la chaîne est organisée dans un plan au sein duquel la chaîne s'organise. Ces éléments de régularité résultent des interactions entre acides aminés et pour la plupart il s'agit des fameuses liaisons hydrogènes entre atomes spécifiques. Bien évidemment certaines régions sont moins organisées et on retrouve localement des structures de type marche au hasard.

Si on récapitule ce que nous avons vu concernant la structure des protéines, nous avons introduit la notion de structure primaire qui n'est rien d'autre que l'enchaînement linéaire des acides aminés. Nous venons de voir qu'il existait des éléments de structure locale (hélices, feuillets) que nous appellerons structure secondaire. Et ces éléments associés aux uns aux autres forment la structure globale tridimensionnelle de la protéine que nous appellerons structure tertiaire.

Il faut noter que cette structure des protéines résulte d'interactions entre acides aminés et il est intéressant de connaître les ordres de grandeur des énergies d'interactions mises en jeu. Ces énergies sont en fait faibles et sont de l'ordre de grandeur de l'énergie thermique (kBT). C'est le même ordre de grandeur que les énergies d'interaction entre molécules au sein d'un liquide comme l'eau ; on peut s'attendre donc à ce que de tels objets ne soient pas rigides ou totalement fixes. Ces mouvements demeurent faibles car il y a une forme de coopérativité (au sens ou plusieurs acides aminés coopèrent pour assurer une stabilité des structures observées) qui permet néanmoins d'observer une vraie structure tridimensionnelle. Ainsi, au sein d'un feuillet ou d'une hélice, plusieurs liaisons sont mises en jeu et à partir de plusieurs éléments interagissant faiblement, on peut obtenir une structure relativement stable de type feuillet ou hélice ; il suffit néanmoins de peu de chose pour détruire ces structures, par exemple chauffer un peu.
Si on revient au mécanisme de repliement on doit abandonner notre idée initiale de recherche au hasard de la bonne conformation. Si on part d'un état initial déplié, un premier phénomène a lieu (essentiellement lié à l'effet hydrophobe, qui vise à regrouper les acides aminés hydrophobes) qui fait rapidement collapser la chaîne sur elle-même. D'autres phénomènes vont alors se mettre en route comme la nucléation locale de structures secondaires de type hélices ou feuillets qui vont s'étendre rapidement le long de la chaîne. Le processus de Levinthal est donc complètement faux et l'image correcte est beaucoup plus celle donnée ici de collapse essentiellement lié à l'effet hydrophobe et de nucléation locale de structures secondaires.
Les protéines n'essaient donc pas d'explorer l'ensemble des conformations possibles pour trouver la bonne solution mais plutôt utiliser les interactions entre acides aminés pour piloter le mécanisme de repliement.
En fait la composition chimique de la chaîne contient une forme de programme qui lui permet de se replier correctement et rapidement.
Au sein des organismes vivants il y a donc plusieurs programmes ; un programme au sein du génome qui permet la synthèse chimique des protéines et un programme de dynamique intramoléculaire interne à la chaîne protéique qui lui permet d'adopter rapidement la bonne conformation lui permettant d'assurer sa fonction.
Il faut noter qu'il existe d'autres façons de s'assurer que les protéines se replient correctement qui font intervenir d'autres protéines (les chaperons).
Notons enfin les tentatives effectuées à l'heure actuelle de modélisation réaliste sur ordinateurs.

 

VIDEO            CANAL  U             LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
initiation musicale toulon  

FÉCONDATION

 

La fécondation est le processus complexe et indispensable qui conduit à la formation d'un nouvel être vivant. Mais pour féconder un ovule, un spermatozoïde doit d'abord connaitre un véritable parcours du combattant.
 
VIDEO         GENTSIDE        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ] Précédente - Suivante
 
 
 
Google