|
|
|
|
|
|
EXPLORATION DU CERVEAU ... |
|
|
|
|
|
PARIS, 11 juillet 2014
Pister la représentation des odeurs dans le cerveau grâce à l'imagerie par ultrasons
Une nouvelle technique d'imagerie par ultrasons a permis de visualiser pour la première fois, in vivo chez le rat, l'activité dans le cortex piriforme lors de la perception d'une odeur. Cette structure cérébrale profonde joue un rôle important dans l'olfaction et restait jusqu'à présent inaccessible par imagerie fonctionnelle. Ces travaux apportent également de nouvelles données sur le fonctionnement, encore mal connu, du système olfactif, notamment sur la façon dont sont traitées les informations au niveau cérébral.
Cette étude est le résultat d'une collaboration entre l'équipe de Mickaël Tanter de l'Institut Langevin (CNRS/Inserm/ESPCI ParisTech/UPMC/Université Paris Diderot) et celle de Hirac Gurden du laboratoire Imagerie et modélisation en neurobiologie et cancérologie (CNRS/Université Paris-Sud/Université Paris Diderot). Elle est publiée dans la revue NeuroImage du 15 juillet 2014.
Comment aboutir à une représentation de l'environnement extérieur à partir de la perception des sens ? Comment, par exemple, les informations olfactives liées à la nourriture ou aux parfums sont-elles traitées par le cerveau ? Si l'organisation du système olfactif est bien connue – elle est semblable des insectes jusqu'aux mammifères – son fonctionnement est encore peu compris. Pour répondre à ces questions, les chercheurs se sont donc intéressés à deux structures cérébrales qui constituent des relais majeurs pour l'olfaction : le bulbe olfactif et le cortex piriforme. Chez le rat, le bulbe olfactif se situe entre les deux yeux, juste derrière l'os du nez. Le cortex piriforme est par contre une structure beaucoup plus profonde du cerveau des rongeurs dont aucune image fonctionnelle n'avait pu être enregistrée chez un animal vivant jusqu'à présent.
La technique d'imagerie neurofonctionnelle par ultrasons développée par l'équipe de Mickaël Tanter, baptisée fUS (functional Ultrasound), a permis de suivre l'activité neuronale du cortex piriforme. Elle est basée sur l'envoi d'ondes planes ultrasonores dans les tissus cérébraux. Les échos renvoyés par les structures traversées par ces ondes permettent, après traitement des données, d'obtenir des images ayant une résolution spatiotemporelle inégalée : 80 micromètres et quelques dizaines de millisecondes.
Le contraste obtenu sur ces images est lié aux variations du flux sanguin dans le cerveau. En effet, l'activité des cellules nerveuses nécessite un apport en énergie : elle est donc couplée à un afflux de sang dans la zone concernée. En enregistrant les variations de volume dans les vaisseaux sanguins qui alimentent les différentes structures cérébrales, il est ainsi possible de connaître la localisation des neurones activés.
Plusieurs techniques d'imagerie, comme l'IRM, s'appuient déjà sur le lien entre volume sanguin et activité neuronale. Mais fUS est avantageuse en terme de coût, de maniabilité et de résolution. De plus, elle donne un accès facilité aux structures les plus profondes, situées plusieurs centimètres sous la boîte crânienne.
Les enregistrements effectués par cette technique dans l'équipe de Hirac Gurden ont permis d'observer la répartition spatiale de l'activité dans le bulbe olfactif. Lorsqu'une odeur est perçue, on observe une augmentation du volume sanguin dans des zones bien définies : à chaque odeur correspond une carte spécifique de neurones sollicités. Au-delà de ce résultat, les images révèlent aussi, pour la première fois, l'absence de cette répartition spatiale dans le cortex piriforme. A ce niveau, deux odeurs différentes entraînent la même activation de l'ensemble de la zone.
Les mécanismes cellulaires responsables de la disparition de la signature spatiale ne sont pas encore bien définis mais ce résultat permet déjà de formuler plusieurs hypothèses. Le cortex piriforme pourrait être une structure qui ne sert pas seulement à traiter les stimuli olfactifs mais plutôt à intégrer plusieurs types d'informations et à les mémoriser. Se détacher des cartographies strictes associées à chaque odeur permettrait de faire des associations et d'aboutir à un concept global. Par exemple, à partir de la perception de centaines de molécules odorantes contenues dans le café, le cortex piriforme permettrait de reconnaître une unique odeur : celle du café.
Ces travaux ouvrent de nouvelles perspectives pour l'imagerie et pour la neurobiologie. Les chercheurs vont maintenant s'intéresser à l'effet de l'apprentissage sur l'activité du cortex afin de mieux comprendre son rôle et les spécificités du système olfactif.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
NEUROSCIENCE - LE SOUVENIR |
|
|
|
|
|
Les émotions associées à des souvenirs peuvent être réécrites, permettant d'adoucir des événéments douloureux du passé et à l'inverse d'assombrir des moments heureux, suggère une étude menée sur des souris au Japon et aux Etats-Unis et publiée mercredi dans la revue scientifique Nature.
"Cette propriété (de renversement) de la mémoire est utilisée cliniquement pour traiter" des maladies mentales, "cependant les mécanismes neuronaux et les circuits du cerveau qui autorisent ce changement de registre émotionnel demeurent largement méconnus", soulignent les chercheurs en préambule.
L'objet de l'étude est de décrypter ces procédés sous-jacents, ouvrant la voie à de nouvelles pistes pour soigner des pathologies comme la dépression ou les troubles de stress post-traumatique. Elle "valide aussi le succès de la psychothérapie actuelle", explique à l'AFP le directeur de recherche Susumu Tonegawa.
Ces travaux, fruit d'une collaboration entre l'institut japonais Riken et le Massachussets Institute of Technology (MIT) aux Etats-Unis, s'appuient sur une nouvelle technologie de contrôle du cerveau via la lumière, appelée "optogénétique", pour mieux comprendre ce qui se passe quand on se remémore de bons ou mauvais moments et si l'on peut modifier la valeur (négative ou positive) associée à un souvenir.
Les résultats démontrent que l'interaction entre l'hippocampe, partie du cerveau qui joue un rôle central dans la mémoire, et l'amygdale, censée être une sorte de chambre de stockage des réactions positives et négatives, est plus flexible que ce qu'on pensait jusqu'à présent.
Pour parvenir à de telles conclusions, les chercheurs ont injecté une protéine d'algue sensible à la lumière à deux groupes de souris mâles. Ils ont ainsi pu suivre la formation d'une inscription en mémoire en temps réel, qu'ils ont réactivée à leur gré grâce à des impulsions lumineuses.
Certains rongeurs ont été autorisés à jouer avec des femelles afin de créer un souvenir connoté positivement, tandis que leurs camarades se voyaient au contraire asséner un déplaisant choc électrique.
- Transformer une répulsion en attirance -
Dans un deuxième temps, les scientifiques leur ont fait artificiellement revivre ces souvenirs, tout en les soumettant simultanément à l'expérience opposée: les souris agréablement disposées recevaient un choc, tandis que les autres avaient la bonne surprise de rencontrer leurs comparses.
La nouvelle expérience a pris le dessus sur l'émotion initiale. "Nous avons fait un test dans la première cage de laboratoire et la crainte originelle avait disparu", décrit Susumu Tonegawa, Prix Nobel de médecine en 1987.
Cependant ce phénomène n'a pu être observé qu'en agissant sur l'hippocampe, sensible au contexte environnant, alors qu'il n'a pas été possible d'influer sur l'amygdale.
Les chercheurs, qui avaient déjà publié des travaux sur l'inscription en mémoire de faux souvenirs chez une souris, espèrent que leurs découvertes du changement de valence positive à négative (d'attirance à répulsion) et vice versa, feront avancer la recherche médicale sur les maladies de type troubles dépressifs ou post-traumatiques, affectant notamment les militaires.
A l'avenir, M. Tonegawa souhaite pouvoir "contrôler les neurones avec une technologie sans fil, sans outil intrusif comme les électrodes" et "potentiellement faire croître le nombre de souvenirs positifs par rapport aux négatifs".
Reste à prouver que cette inversion d'émotion associée à un souvenir fonctionne de la même façon chez l'homme que chez la souris, même si l'on sait déjà que les processus mnésiques ont été conservés au cours de l'évolution des espèces.
Dans un commentaire rapporté par Nature, les chercheurs Tomonori Takeuchi et Richard Morris de l'université d'Edimbourg en Ecosse estiment que cette étude jette une lumière nouvelle sur les mécanismes de la mémoire, tout en relevant les limites de l'optogénétique en la matière.
DOCUMENT INTERNET LIEN |
|
|
|
|
|
|
DES LIPIDES AU SERVICE DU CERVEAU |
|
|
|
|
|
Paris, 7 août 2014
Des lipides au service du cerveau
Consommer des huiles riches en acides gras polyinsaturés, notamment en « oméga 3 », est bénéfique pour notre santé. Mais les mécanismes expliquant ces effets sont mal connus. Des chercheurs de l'Institut de pharmacologie moléculaire et cellulaire (CNRS/Université Nice Sophia Antipolis), de l'unité Compartimentation et dynamique cellulaires (CNRS/Institut Curie/UPMC), de l'Inserm et de l'université de Poitiers1 se sont intéressés à l'effet de lipides portant des chaînes polyinsaturées lorsqu'ils sont intégrés dans les membranes de cellules. Leur étude montre que la présence de ces lipides les rend plus malléables et ainsi beaucoup plus sensibles à l'action de protéines qui les déforment et les découpent. Ces résultats, publiés le 8 août 2014 dans la revue Science, offrent une piste pour expliquer l'extraordinaire efficacité de l'endocytose2 dans les cellules neuronales.
La consommation d'acides gras polyinsaturés (comme les acides gras « oméga 3 ») est bénéfique pour la santé. Ces effets vont de la différentiation neuronale à la protection contre l'ischémie cérébrale3. Les mécanismes moléculaires responsables de leurs effets sont cependant assez mal compris. Les chercheurs se sont donc penchés sur le rôle de ces acides gras dans le fonctionnement de la membrane des cellules.
Pour assurer le bon fonctionnement d'une cellule, sa membrane doit pouvoir se déformer et se découper pour former des petites vésicules. Ce phénomène est appelé « endocytose ». De manière générale ces vésicules permettent aux cellules d'encapsuler des molécules et de les transporter. Au niveau des neurones, ces vésicules dites synaptiques vont jouer le rôle de courroie de transmission à la synapse pour le message nerveux. Elles sont formées à l'intérieur de la cellule, puis se déplacent vers son extrémité et fusionnent avec sa membrane, afin de transmettre les neurotransmetteurs qu'elles contiennent. Elles sont ensuite reformées en moins d'un dixième de seconde : c'est le recyclage synaptique.
Dans ces travaux à paraître dans Science, les chercheurs montrent que des membranes cellulaires ou artificielles riches en lipides polyinsaturés sont beaucoup plus sensibles à l'action de deux protéines, la dynamine et l'endophiline qui déforment et découpent les membranes. D'autres mesures de l'étude et des simulations suggèrent que ces lipides rendent aussi les membranes plus malléables. En facilitant les étapes de déformation et de scission nécessaires à l'endocytose, la présence des lipides polyinsaturés pourrait expliquer la rapidité du recyclage des vésicules synaptiques. L'abondance de ces lipides dans le cerveau pourrait ainsi représenter un avantage majeur pour les fonctions cognitives.
Ces travaux lèvent partiellement le voile sur le mode d'action des « omégas 3 ». Quand on sait que notre organisme ne sait pas les synthétiser et que seule une nourriture adaptée (riche en poisson gras etc.) nous en fournit, il semble important de poursuivre ces travaux pour comprendre le lien entre les fonctions que ces lipides assurent au niveau de la membrane neuronale et leurs effets bénéfiques pour la santé.
DOCUMENT CNRS LIEN
|
|
|
|
|
|
|
PRÉFÉRENCE MANUELLE ET LANGAGE ... |
|
|
|
|
|
Paris, 30 juin 2014
Préférence manuelle et langage : existe-t-il vraiment un hémisphère dominant ?
Les chercheurs du Groupe d'imagerie neurofonctionnelle (CNRS/CEA/Université de Bordeaux) ont démontré, avec une approche novatrice basée sur l'exploitation d'une grande base de données psychométriques et d'imagerie cérébrale, que la localisation des aires du langage dans le cerveau est indépendante du fait d'être droitier ou gaucher, sauf pour une très faible fraction de gauchers dont l'hémisphère droit est dominant à la fois pour les activités manuelles et pour le langage. Leur étude est publiée dans Plos One le 30 juin 2014.
L'espèce humaine est la seule chez laquelle on observe une asymétrie du comportement moteur fortement majoritaire : 90% de la population utilise préférentiellement la main droite et 10% la main gauche. Ce comportement moteur est dit « croisé » : si on utilise la main droite, c'est l'hémisphère cérébral gauche, alors considéré comme dominant, qui est activé. Le langage, avec le comportement moteur, est une des fonctions les plus latéralisées du corps humain : en fonction des personnes, les réseaux d'aires cérébrales contrôlant la parole sont situés préférentiellement dans l'hémisphère gauche ou dans l'hémisphère droit du cerveau. De nombreuses études ont montré que l'hémisphère gauche, comme pour le comportement moteur, est dominant pour le langage dans 90% des cas.
Les 10% de gauchers de la population correspondent-ils au 10% des individus dont le langage est situé dans l'hémisphère droit du cerveau ? La localisation des aires du langage dans le cerveau est-elle alors corrélée au fait d'être droitier ou gaucher ? Pour répondre à cette question, les chercheurs du Groupe d'imagerie neurofonctionnelle ont tout d'abord recruté un large échantillon de participants (297) très fortement enrichi en gauchers (153). Alors que la plupart des autres études ne concernent que des droitiers (majoritaires dans la population) les chercheurs ont analysé, pour la première fois, la latéralisation du langage chez un grand nombre de droitiers et de gauchers. Les sujets de cet échantillon ont ensuite subi une IRM fonctionnelle alors qu'ils effectuaient des tests de langage. Trois types de latéralisation pour le langage ont ainsi été révélés à partir des images obtenues (voir figure 1) : « typique » avec un hémisphère gauche dominant (présent chez 88% des droitiers et 78% des gauchers), « ambilatéral » sans hémisphère clairement dominant (présent chez 12% des droitiers et 15% des gauchers), « très atypique » avec un hémisphère droit dominant (présent uniquement chez 7% des gauchers). L'analyse statistique de cette distribution montre que la concordance entre l'hémisphère dominant pour les activités manuelles et celui pour le langage se fait au hasard, sauf pour une petite fraction de la population (moins de 1%) pour laquelle l'hémisphère droit est dominant à la fois pour le langage et pour la main.
Ces résultats montrent donc qu'il n'est pas possible de déterminer l'hémisphère dominant pour le langage en connaissant seulement la préférence manuelle d'un individu. Les chercheurs vont maintenant tenter de comprendre pourquoi seul un petit groupe de gauchers possède un hémisphère droit dominant pour le langage, en déterminant en particulier s'il existe des variants géniques qui expliqueraient ce phénomène. Ces résultats démontrent également qu'un échantillon enrichi en gauchers, composé à partir d'une grande base de données, permet, à la différence d'un échantillon essentiellement constitué de droitiers, de mettre en évidence des facteurs de variabilité des bases structurales et fonctionnelles du cerveau humain : la détermination de ces sources de variabilité dans la latéralisation du langage ouvre la voie vers une meilleure compréhension des pathologies du langage.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ] Précédente - Suivante |
|
|
|
|
|
|