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Abstract

Computing the minimal polyadic decomposition (also ofteferred to as canonical decompo-
sition, or sometimes Parafac) amounts to finding the globaimum of a coercive polynomial
in many variables. In the case of arrays with nonnegativiesntthe low-rank approximation
problem is well posed. In addition, due to the large dimemsibthe problem, the decompo-
sition can be rather efficiently calculated with the help cégqonditioned non linear conjugate
gradient algorithms, as subsequently shown, if equippetl am algebraic calculation of the
globally optimal stepsize in low dimension. Other algarith are also studied (gradient and
quasi-Newton approaches) for comparisons. Two versioeadt algorithm are considered: the
Enhanced Line Search version (ELS) and the backtrackirgjore(alternating with ELS). Com-
puter simulations are provided and demonstrate the gooavimtof these algorithms dedicated
to nonnegative arrays, compared to others put forward ifitdrature. Finally, applications in
the context of data analysis illustrate various algorithifise main advantage of the suggested
approach is to explicitly take into account the nonnegatiatire of the loading matrices in the
problem parameterization, instead of enforcing positinFies by projection. On the chosen
example, such an approach also happens to be more robustesitct to possible modeling

errors.
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1. Introduction

The minimal polyadic decomposition of a tensor, sometineésrred to as “Canonical Polyadic”
(CP), is also called “CanDecomp”, “CanD”, or “Parafac”. $lkiecomposition, whose definition
is recalled in Section 2, turns out to be very useful in a widegb of applications; see e.g.
[6, 8, 14, 28] and references therein. However, severatdiffes arise when the CP needs to be
computed. First, even if an exact fit exists with a known nunadbéerms, the calculation of the
CP consists of finding the zeros of a polynomial of degree slarger, in a very large number
of variables. This problem is numerically very difficult tolge, even if the number of zeros
is finite. Second, if the model is subject to errors, an apprate fit is wished to be computed.
However, it is now well known that a best approximate may heags exist [24, 16, 8]. Third, in
several applications such as hyperspectral imaging or chetrics, the loading matrices need
to be constrained to be real and nonnegative [5, 28]. We sbbBequently concentrate on this
framework. Fortunately, one advantage of the latter cairgtrs that the approximation problem
becomes well posed [16]. Lastly, a recent book has been edioaded to this particular problem
[5].

Numerical algorithms are provided in the present paper,aadiased on preconditioned non
linear conjugate gradient, well matched to large dimersi@mombined with a global search
in a chosen dimension. The latter combination permits tamsdrom local minima. Other
algorithms are also studied (gradient and Quasi-Newtonoagpes, for the purpose of compar-
ison). Two versions of each algorithm are considered. Nwed non linear conjugate gradient
optimization technique has already been suggested in [&3jlth a simple version of precon-
ditioning (by a diagonal matrix).

The article is organized as follows. After a brief introdant Section 2 starts with some defini-

tions, and properties of third order tensors. The probleth@polyadic decomposition of 3-way



arrays is then stated and existing standard algorithms @regegol out. Section 3 is dedicated
to nonnegative 3-way array factorization. The cost fumctice suggest to use is introduced,
and basic quantities such as gradient matrices are theulai@gd. In Section 4, the precondi-
tioned non-linear conjugate gradient approach is predesgewell as three other approaches:
gradient, Quasi-Newton, and non-linear conjugate gradipproaches without preconditioning.
With regard to the choice of the step size, two differenttegies are studied: a global search
via Enhanced Line Searckl(S) and backtracking alternating wiLS. Computer simulations
are provided to illustrate the effectiveness of the progagorithms, and to compare them with
other algorithms, which are more standard in the literafior€P computations. In Section 5, we
show the usefulness of these algorithms, and explain hoyvdiue be applied in Data Analysis.

Finally, a discussion is proposed and a conclusion is drav@ection 6.

2. Problem statement
2.1. Notation

The outer (tensor) product between two tensrss R11x2%XIn gndy ¢ R/1x/2xxJIu
is denoted byZ = X ®Y € RIEx.xInxJixJax..xIa and defined by iy injrjo.jns =
Tivig..inYjijo.dn

Denote by(-)” matrix transposition. As special cases, the outer prodetwéden two vectors
a € R’ andb € R’ yields a rank-one matriC = a®b = ab” € R’*’. The outer product
of three vectorsa € R’ andb € R’ andc € R yields a third order rank-one tens@r =
a®b®c e RIXIxK wherez;ji, = a;bjcy.

The Kronecker product between two matricAs= (a;;) = [aj,as,...,ar] € R and

B = [by,by,...,bg] € R/*% is defined as:

a11B algB e CLL]B

ang aggB e CLQJB
A®B=

CL[lB CL[QB CL_[JB



The Khatri-Rao product between two matrices with the sammbmun of columns,A =
[ai,as,...,ap] € RP*F andB = [by, by, ...,br] € R/*F is defined as the column-wise

Kronecker productA ©® B = [a; ® by, a;®bs, ar ®@bp] e RI/XF,
2.2. Preliminaries

A tensor is an object defined on a product between linear sp&ugce the bases of these spaces
are fixed, a third order tensor can be represented by a thageaway (a hypermatrix). The
order of a tensor hence corresponds to the number of indfci® @ssociated array. One also
talks about the number efaysor moded28]. In this paper, due to the considered applications,
including fluorescence spectroscopy [2][28] or hypergpédimaging [31], we focus on real
positive 3-way arrays denoted ) = (t;;;,) € R/*/*K admitting the following trilinear

decomposition, also known as a triadic decomposition [12[ o

F
T:Zaf®bf®cf, (1)

F=1
where the three involved matrices = (a;f) = [ai,as,...,ap] € RIXF, B = (bjy) =
[b1,by,...,br] € RXF C = (¢4f) = [c1,¢2,...,cp] € REXF are the so-calletbading

matrices whose columns are tHeading factors F' is an integer andp stands for the outer
product. Equivalently, we have the relation between arrasies:

F
tije = aifbjrery Vi=1,...1 Vj=1,..,J Vk=1,.. K 2)
f=1

The smallest integeF’ that can be found such that the equality above holds exactglied the
tensor rank[15]. For this value ofF’, the above decomposition is called the Canonical Polyadic
decomposition (CP) of tens@r. Note that this acronym may also stand for CanDecomp/Rarafa
if some readers prefer. Finally, it is sometimes conveniergssume that all vectors have unit
length, so that the modified model below is then used, inst&éL):

F

T:Z)\faf(@bf@cf (3
f=1



where)\; are scaling factors anl = [y, ... ,Ar]”. The model (3) can be written in a compact

form using the Khatri-Rao product, as

T;" = AACoB)", 4)
T{g“ =BA(Co A)T, (5)
Tg;” = CABoA)T, (6)

WhereTI IE (resp. Té?l andTK JI) is the matrix of sizel x JK (resp.J x KI andK x JI)
obtained by unfolding the arrd¥ of sizel x J x K in the first mode (resp. the second mode
and the third mode)A is the F' x F' diagonal matrix defined aA = diag{\} where operator
diag{-} returns a square diagonal matrix which contains in its diagjthe elements of the vector

given in argument.

2.3. CP decomposition of 3-ways tensors

Assuming that" is known (or overestimated), the problem of the polyadicodegosition of a 3-
ways tensofl' € R/*/*K is to estimate the three loading matricksc R’ B € R/*F and

C ¢ RE*F (and eventuallyA € R*F if the model described in (3) is considered). A rather
classical way to solve such a problem consists of minimizrsgitably designed cost function.

Typically, we minimize (with respect to the three loadingtrites), the cost function:

F(A,B,C) = |T/" — AA(COB)|} (7)
= [T = BA(C o A)"|} (8)
= |7 — CAB o A, 9)

where|| - || ¢ stands for the Frobenius norm. In the problem of the polyadiwnical decompo-
sition of the 3-way tensdr, its rank F' has to be estimated too.
2.4. Standard approaches

In the tensor literature, one can find several solutions ligegbis optimization problem (see for
example [30] for a survey and a comparison of several egisstandard methods). The most

popular approach is to apply theLS technique [3, 4, 11, 13], its line search version [2] or
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more recently its enhanced line search version [26]. In suchpproach, the cost function is

alternatively optimized with respect to one given loadingtrix, the two others being assumed

fixed and independent, which is clearly suboptimal. Theedéffitiald 7 of F has to be derived

and finally the gradient components (thex F' matrix Va F, the J x F matrix VgF and the

K x F matrix Vo F) can be calculated.

We have (the casA = I, wherely is the identity matrix of sizé” x F' was studied in [5, 9]):
VaF(A,B,C;A) = [—Tg‘)”( +AAC® B)T] (C®B)A

= -T(/"(CoB)A+ AA(CTC)T (B'B)A, (10)

VeF(A,B,C;A) = [—T‘(]é‘)KI +BA(C® A)T] (CoA)A,
= —T/;(C® A)A +BA(C"C) 1 (ATA)A (11)

VeF(A,B,C;A) = [_Tg;” +CABOG A)T] (BOA)A

= -T(5;" (BO A)A + CA(B"B)E (ATA)A, (12)

wherel] stands for the Hadamard (entry-wise) matrix product.

By equating the gradient components to zero, a simple soligiobtained:

A=T1i"(ACoB)) (13)
B= Té{f(A(c oA (14)
C=15" (AB oA, (15)

where(-) stands for the pseudo-inverse (or Moore-Penrose genettatiatrix inverse).

In [8, 9], gradient approaches were mentioned. It was sugdés [22, 29] to use Gauss-Newton
approaches (and more precisely the Levenberg-Marquartitoshewhich was implemented in
[7, 8]). Lastly in [14], Quasi-Newton approaches have begrorted.

However, the polyadic decomposition @f-way arrays may be an ill-posed problem and may
lead to unstable estimation of its components such as tworfdegeneracy2FDs) [24] (pres-
ence in the solution of almost collinear solutions but wifiposite signs involving that they

almost cancel out each other contributions).



Moreover, as argued earlier, we concentrate on real peséisors and their decomposition with
real positive loading matrices [28, 31]. Hence in the nextieas, we focus on a well-posed

problem [16],i.e. Nonnegative Tensor FactorizatibTF.

3. Nonnegative 3-way array factorization

In this section, we discuss approaches in which the thredgingamatricesA, B and C are

constrained to be nonnegative.

3.1. Existing approaches

A first approach developed in [22, 29, 30] has been to use sdrtteeexisting well-known

NonNegative Least SquarddNLS) methods to solve the following “vectorized” system:
vec{T{i{K —AA(COB)T} =0, (16)

where thevec{-} operator applied on a given matrix stacks its columns intolanen vector and
077k, is a vector of sizd JK x 1 which contains only null elements.

A second approach consists of modifying the previous costtion 7, by adding penalty terms
whose aim is to impose boundedness on the solution and/afdoce other specific propriety
on the solution such as smoothness, sparsity or uncomeks. In [5], it is suggested among

other things to use one of the two following cost functions:

G(A,B,C;A) = F(A,B,C; A), +aa||A|} + ap|BlfE + acCl (17a)

Gi(A,B,C;A) = F(A,B,C;A) + aa|All1 + ap|B|: + ac||Cl|1, (17Db)

subject to nonnegativity constraints.s, oz anda¢ are nonnegative regularization parameters
to impose boundedness on the solution. In (17a) the stafdlendnov (>-norm) regularization

is meant to enforce smoothness of the solution and in (1&7J) thorm regularization|(A ||, =
Zi,j la;j]) is meant to enforce sparsity of the solution. The diffesdgorithms already evoked in

the previous section can be applied to solve that optinumgiroblem. The gradient components



given in (10), (11) and (12) are simply replaced by:

VaG(:) =VAF()+2a4A or VaGi(:)=VaF()+ aal;p, (18)
VBG() = VBF() +2a5B or VgGi(:) = VBF(:) +apl;F, (19)
ch(') = Vc]:() +2acC  or ngl(‘) = Vc]:() +aclk.r, (20)

wherelg r stands for theé< x I matrix with ones everywhere. In [5], it was suggested to use
the ALS technique again. By equating the gradient components & #tex solutions in the case

of thely-norm penalization are found to be equal to:

A=T/"(CoB)A[A(COB))(COB)A + 20415]", (21)
B=T/"(CoA)A[ACOA)T)(CO A+ 20515, (22)
C=T{" BoAA[ABOA)T)(BOAA +20clr] . (23)

whereas, in the case of thenorm penalization, they are:

A= [T{;)’K(c ®B)A — aAlLF} [A(CoB)T)(CoB)A]", (24)
B = [T,(CoA)A—aplr] [A(COA))(Co A, (25)
C= [T@”(B ©A)A — aclKF} [ABoA)T)BoAA]" (26)

Finally, a “projection operator]-] is applied, whose aim is to enforce positive entries (since

that property is obviously not guarantied by the penaltyngethat have been added).
K%[K} , ﬁ%[ﬁ} , (A3<—{(A}] . 27)
+ + +
where[M = (m;;)|+ returns a matrix of the same sizelbwhose(i, j) entry ismax{e, m;;}

if € is a small constant (typically0—'9).

3.2. Suggested approach
3.2.1. Loading matrices parameterization
One obvious way to constraint the loading matrices to haveegative entries is to implicitly

take into account their nonnegative aspect in their paramzation without modifying the used



cost function. This kind of parameterization has been ri¢eised in nonnegative matrix fac-
torization [5] problems. To consider that a matrix, s&j; possesses only nonnegative terms,
we can simply assume that all its entries are define@p& a?j. Using the Hadamard entry-
wise product, it implies thaA’ = A [1 A, for some (non unique) matriA. This suggests the

following cost function:

H(A,B,C)=FAQDA,BEB,CHC) (28)
= |IT" — (AT A)A[(CEC)o BEB) |7 = 60l (29)
=T - BEBA(CTC) 0 (ADA)" [} = [6xlF  (30)
=T - (CEOA[(BEB) o (ADA) [} = 6m[F (31
The differentiald of H has to be derived and then we will be able to calculate theigmad
components (thé x F' matrix VaH, theJ x F matrix VgH and theK x F' matrix VcH) and
eventually the Hessian matrices.
With this goal, define the Frobenius scalar prod(st B) = trace{A”B}. We also have:

(A,A) = ||A]|%2 = trace{ATA}. As a consequence, the cost functitfA, B, C) can be

rewritten — in the first mode for example — as:
(5(1), 5(1)> = trace {5{1)5(1)}
T
— trace { (Ta‘)}K —(ADA)A[(CHC)6 (BO B)]T) :

<Tfi‘)]K “(ATA)A[(CEC)6 (BO B)]T) } .

The calculation ofi# (A, B, C) is performed in Appendix A, and is equal to:

dH(A,B,C) = (4[AE ((-61))[(CEC)® (BEB)|A)],dA)

N

+ [0 ((—d2) [(CEHC)® (ALA)A)],dB)

+(4[CE((—85) (BEB)® (ABA)A)],dC) (32)



3.2.2. Gradient matrices

Using (32), the three gradient componeRtg #, VgH and VcH can be derived. They are

found to be equal to:

VAH(A,B,C) = W =4A 0 ((-6p))[(CEC)® (BEB)JA),  (33)
VeH(A,B,C) = % —4BO((-0)[(CHC)® (ADA)A),  (34)
VOH(A,B,C) — w —4CH ((-6)(BOB)o (ADAJA).  (35)

We can then build either the following + .J + K) x F matricesG*) andX*) :

VaH(A® BE CH) A
ak) — VeH(A® B® c®) |, xX® — | gtk (36)
VeH(A®, BEF), C®) c®

or the following(I + J + K)F x 1 vectors:

vec[VaAH(A®, BE) k) vec{A(®)}
g = [ vec{VeH(A®,BH® ch)} |, xB) = [ vec(B®} (37)
vec{VoH (AR, B®) k) vec{C*)}

4. Preconditioned non linear conjugate gradient algorithms

To estimate the three loading matricks B andC, the cost functior{ given in (29) or (30) or
(31) depending on the considered mode has to be minimizethaf@aim, we suggest, here, to
optimize the cost functioft! simultaneously with respect to all variables using a prditammed
non linear conjugate gradient method [27].

In the classical gradient approadX,given in (36) is updated at each iteratibrik = 1,2,...)

according to the following adaptation rule:

XD — X0 _ 0 Ggh) or x(+D) Zx®) _,®) k), (38)

whereG*) is the gradient matrix given in (36) using (33), (34) and (86) () the step size

(the problem of the choice of the stepsize is treated in 8eeti3). We notice that when the
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nonnegativity constraint no more holds, (33), (34) and @#®)simply respectively replaced by
(10), (12) and (12).
In the preconditioned conjugate gradient approach, thoxiged X denoted by is initialized

usingd® = —g() and updated at each iteratiéraccording to the following adaptation rule:

(39)
A+ = —(MED)—1gk+1) 4 gk q(k)

{ XD = x(k) 4 (B k)
where the residual (in the classical linear conjugate graylis then set to the negation of the
“vectorized” gradient matrixg* 1) which is updated using (33), (34) and (35) in (37). The
(I+.J+K)F x 1 vectord®) contains the search directions and the sqUare + K)F x (I +
J+K)F matrix M stands for the preconditioner. As noticed in [25][27], tloa linear conjugate
gradient method can be preconditioned by choosing a pré&emmer M that approximates the
Hessian matrix or at least its diagonal. In the non lineajugate gradient, two expressions
for the value ofg are classically used: the Fletcher-Reevgs] and the Polak-Ribiereser)
formula [25]:

) g(k+1)Tg(k:+1)

(k+1

frr = gl o(k) (40)
T

(k+1) g(kH) (g(k“) - g(k)) 41

R ()T (k) ' )
g g

Finally, as noticed in [25] (p. 102), if we reinitialize a gagate gradient method by setting
d® = —g from time to time, we might get better performance than hystactingd® by
one of the standard formulaegise( combining (39) and (40) or (39) and (41)) at each iteration.
In our case, we have chosen to perform this “restart” eyéry J 4+ K)F iterations.

4.1. Particular cases

4.1.1. Non linear conjugate gradient algorithm

Considering thaM = I, ;1 k) in (39), we simply obtain the non linear conjugate gradient

method:

(42)

X1 = x(®) 4 (R (k)
dlk+D) = _glk+D) 4 g q(k)

11



which can be equivalently written in the ensuing matrix form

XD = Xk 1 pk)
(43)
D) — _ gkt 4 gkp®k)
with
D vec DY\ [a®
D*) = Dg) d®) = vec{Dgc)} = dg) (44)
D¢, vee(DG})  \a

The two expressions for the valuethat are classically used remain the Fletcher-Reesugg) (

and the Polak-Ribiéresgr) formula (now written using matrices instead of vector§]{2

Gty _ {GUERD, QD) @D

I TN <1 N T LT A @)
(k+1) @k+1) _ (k) (k+1) @k+1) _ k)
(G, GR) IGW)|%
And again, this algorithm is initialized by usilB() = —G®) and restarted after a given

number, say ] + J + K)F of iterations, withD®) = —G() as initial guess, to speed up the

convergence.

4.1.2. Quasi Newton approacheBHGS and DFP algorithms)
In (39), by setting3 = 0 and considering that the preconditioris a(/ + J + K)F x (I +
J + K)F approximation of the Hessian matrix given by (47):

M) _ ) Ag®) (AgtHT  (M® Ax®) ) (M*E) Ax*))T
N (Ag®) Ax(k)) - (M®F) AxF) Ax(®)Y 7

(47)

we obtain the following adaptation rule as in the Broydeet¢ter-Goldfarb-ShanndBEGS)

algorithm:

12



x(HD — ®) _ ) (MR~ Lg (k)

Ax®) = x(B+1) () o
48
Agh) = glk+D) _ glk)

AgF) (AgkN)T (M) Ax () ) (M) Ax (k)T
(AgR) Ax(F)y (M®) Ax(®) Ax (%))

MGEHD = k) 4

Using the inversion lemma and denoting by= (Ag(k)l the inverse of the approximate

)T Ax (k)
Hessian matri®M(¥) can be estimated. The algorithm in (48) can be rewritten:

(kD) — x()) _ () (M) =1 g k)
Ax(® _ (k1) (k)
Ag®) — glk+1) _ g(k) (49)

(M) = (M) 74 p 14 p(Ag®)T(MB) T Agh] AxB(AxB)T
—pAxF) (AgNT(MEN) =1 — p(MF)) T Agk) (AxFNHT

In (39), by setting = 0 and considering that the preconditioddris directly a(/ + J+ K)F x
(I + J + K)F approximation of the inverse of the Hessian matrices gingd0):

Ag®, Ax®) Ag® MBAgh)

we obtain the following adaption rule as in the Davidon-Ehetr-Powell algorithmFP):

x(k+D) = x(®) _ (MK gk)

Ax®) = xE+1D) (k)

Agh) = glht1) _ (k) (51)
| M) = SR e

In all the cases, the algorithm is initialized using Idi") (or (M(1))~1), a symmetric(I + J +
K)F x (I + J+ K)F positive-definite matrix.

4.1.3. Levenberg-Marquardt algorithm
When the preconditionévl tends to loose its “hereditary positive-definiteness” propthrough

the iterations, and hence may fail to construct descenttitires, it is better to stabilize it using

13



trust region techniques that modityl by adding a multiple of the identity matrix as in the

Levenberg-Marquardt approach [18]:

xk+1) = x(®) k) (V) 4 O‘I(I—l—J-i-K)F)_lg(k)

Ax®) = x(B+D) _ x (k)

Agh) =gkt _ g(k) -
M = MO 4 e - e

wherea is a relaxation coefficient. We notice that by setting- 0 in (52), the algorithm in (48)
is recovered, but, by settinlyl = I, ;. xr in (52) (or by considering that is chosen high
enough), the gradient algorithm in (38) may be obtained.

4.2. Algorithmic complexity

Regarding to the algorithmic complexity, for té.S algorithm, the calculation has been done
in [8]. It amounts too(7F?(JK + KI + 1.J) + 3F1JK). For the gradient algorithm, the com-
putational cost per iteratiok approximately amounts @61 F'J K) (since for each of the three
gradient components, we have four operations: 2 matriaeuets + 1 Khatri-Rao produét+ 1
addition). This computational cost is thus governed by #ieutation of the matrixG. The total
number of arithmetic operationsad$6/ F'J K Ny;) if N;; stands for the total number of iterations
to reach convergence. For the gradient algorithm with ngativty constraint, the algorithmic
complexity is nearly the samee. o(6/FJK') and the total number of arithmetic operations is
o(6IFJK Ny) too.

For the non linear conjugate gradient method (in both ciasesith or without the nonnegativity
constraint), the algorithmic complexity approximativeynounts too(6FI1JK + 2(1 + J +
K)F?) (since the calculation of adds two matrices multiplications).

For theBFGS method (Newton-Raphson approach) (in both cagesvith or without the non-

negativity constraint) the algorithmic complexity per#&gon amounts too(6/FJK + 4(1 +

The cost for multiplying theV x M matrix B by the M x P matrix A is assumed(N M P).
2The cost for calculating the Khatri-Rao product between¥he M/ matrix B by the P x M matrix A is assumed
o(NMP).

14



Method Cost per iteration
General case | Casel = J =K
ALS (without positivity constraint) T(JK+KI+1J)F? +3IJKF | 21(IF)% + 3FI3
ALS-Cichocki 3IJKF 3FI3
Gradient 6IJKF 6F 13
Non linear conjugate gradient 6IJKF +2(1 +J + K)F? 6FI3 4 61F?
Gauss-NewtongFGS) (I+J+ K)3F3 2713 F3
BFGS using (49) 41+ J+ K)*F? 361°F?
Gauss-NewtonFP) 4(I+J+ K)*F? 3612 F?
Levenberg-Marquardt (I+J+ K)3F3 2713 F3
Preconditioned non linear conjugate gradignt (I+J+K)3F3 2713 F3

Table 1: Algorithmic complexity of various algorithms

J+ K)2F? 4+ (I +J + K)3F3) since 4 matrices multiplications and one matrix inverdibave
been added. Finally the computational cost per iteration((I + J + K)3F3) which implies
that it is mainly governed by the matrix inversion.

If the matrix inversion is avoided ((49) instead of (48))e tbomputational cost is reduced to
~o(4(I + J + K)*F?).

For theDFP method, (in both casdase. with or without the nonnegativity constraint) the algo-
rithmic complexity per iteration amounts to4(+.J+ K)2F?). Finally, for the preconditioned
linear conjugate gradient method (in both caseswith or without the nonnegativity constraint),
the algorithmic complexity per iteration amountsxtoo((1 + J + K)?F?) too since the3 cal-

culation computational cost becomes negligible. Thesdtseare summarized in Table 1.

4.3. How to choosg (%) ?
4.3.1. Enhanced line sear¢gLS)

The ELS enhancement is applicable to any iterative algorithm, igiexV the optimization crite-
rion is a polynomial or a rational function. It searches fur best stepsizg,,: that corresponds

to theglobal minimunof (28) (or (29) or (30) or (31)). It implies the algebraic @alation of the

3The cost for inverting theéV x N matrix B is assumea(N?) (Gauss-Jordan elimination). This cost could be
reduced using another algorithm.
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following quantity:
H(AFH) B+ olk+D)y — 9 [( A® L DAY E (AR - DAR),
(B® + uDp®) 3 (B + D ™), (€M) + ;D) B (CH + uDc™)] . (83)

It has to be minimized with respect to As shown in Appendix B, this quantity is a 12th-degree
polynomial whose expression is given by (we opt to omit theetelency upon the parameters

of H to simplify the various expressions):

12
H() =D ai, (54a)
=0
11 4
dH() = (i + Daipap, (54b)
=0
where the thirteen coefficients, fori = 0,...,12 are found equal to (see Appendix B to get

the definition ofK;), wherei varies froml to 6):

ap = trace [KoKo”| (55a)
a1 = trace 2K 1Ko | (55b)
as = trace [2K2Ko” + K1 K17 ] (55¢)
az = trace [2 (K3Ko” + K2K1")] (55d)
ag = trace [2 (K4Ko” + KsK; ") + KoK | (55€)
as = trace [2 (KsKo” + K4K1” + K3Kp” + K3K» )] (55f)
ag = trace [2 (KeKo” + KsK1” + K4Ko2") + K3K3” ] (559)
a7 = trace [2 (KeK1” + KsKa” + K4K3")] (55h)
ag = trace [2 (KeK2" + K5K3”) + K4Ku4] (55i)
ag = trace [2 (Ke¢Ks” + K5K4”)] (55)
aip = trace [2KeK4” + KsK5” | (55k)
ain = trace [2KgK5” | (55l)
a1z = trace [KeKg' | (55m)
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By derivating the expression &f with respect tq:, we obtain the polynomial of degréé given

in (54b). The optimal stepsiz&,,: corresponds, then, to the real and positive root of the ti&or
polynomial defined in (54b) leading to the minimum of theamiibn given in (54a).

With regard to the algorithmic complexity, the cost is novieduby the calculation of the 13
coefficients of the 12th-degree polynomial given in (54d)e Bbtained results are summarized

in Table 2.

4.3.2. Backtracking

The main problem with the enhanced line search is its cortipntd cost. As already noticed,
the cost in theELS version of the algorithms is ruled by the calculation of ti3ecbefficients of
the polynomial we intend to minimize. An alternative apmtoecalled backtracking, consists of
computing the locally optimal step size and to alternatd \kitS every 10 or 20 iterations for
example. The main advantage of such an approach is its loyuw@tonal cost. This method
attempts to determine a step length so that the step is suffigiong while still producing some
amount of decrease of the cost function. As a consequeneendithod implies to start with a
stepu large enough (for example a unit step size) and to decreatatively by a factors
i.e. u = Bp (with 3 commonly chosen betweénl and0.8) until the Armijo condition [1][19]
given in (56) is fulfilled. The resulting is the stepsize:*) used in the updating rule of the
optimization algorithm. We still consider the same costction H given by (29). During the
updating stage of the considered algorithm, it becoéA + yDa,B + uDg,C + uDc)

given in (53). Thus, with our notations, the Armijo conditiceads:
H(A + uDa,B + uDg,C + uD¢) < H(A,B,C) +a ug'd (56)

wherea is a constant parameter often chosen withior#, 10~!], d is the descent direction
given in (44) andg is the gradient given in (37). Sinekis a descent direction, we hagéd < 0
(in the specific case of the gradient algorithin= —g, whereasl = —M~!g for Quasi-Newton
algorithms).

It is also possible to combine the backtracking method togetvith a search by adjustment

method whose advantage is to include a “memory” of the ptsvgieps. For example, if the
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Method Cost per iteration
General case \ Casel =J =K

ALS without positivity constraint| 7(JK + KI + IJ)F?> + 11IJKF +9IJK | 21I°F? + 11I3F + 913

Gradient 49K JI* + 13IJKF 491 +131°F
Non linear conjugate gradient || 2(1 +.J + K)F? + 49K JI? + 13IJKF 61F? 4+ 491" + 13I°F
Gauss-NewtongFGS) (I+J+KPF?+49KJI? + 13IJKF | 2713 F3 + 491* + 13°F
Gauss-NewtonBFGS with (49)) || 4(1 +J + K)?F? + 49K JI? + 13IJKF | 361°F? +491* + 13I°F
Gauss-NewtonFP) A1+ J+K)?F?+49KJI? + 131JKF | 361°F? + 491* + 1313F
Levenberg-Marquardt (I+J+KPF?+49KJI? +13IJKF | 2713 F3 + 491" + 133F
Preconditioned conjugate gradiept (I +.J + K)3F3 + 49K JI? +13IJKF | 27I3F3 +491* + 13I°F

Table 2: Algorithmic complexity for th&LS version of the different algorithms

found during the backtracking step is lower than the ingi&lp called., 1o is decreased (this
new value will be used for the next backtracking steps) byctofa3. On the opposite, if it is

higher thanug, 11 is increased by another factar> 1.

5. Computer simulations

Simulations are now provided to illustrate the behavior #redperformances of the proposed
NTF algorithms. To that aim, we consider the case of a fluorescanalysis. If a solution

is excited by an optical excitation, several effects may lmelpced: Rayleigh scatter, Raman
scatter and Fluorescence. At low concentrations, the Baeibert law can be linearized so that

the fluorescence intensity rather accurately follows theehbelow [28, 17]:
I()\fa )‘ea k) - OfY()‘f) 6()\8) Ck

wheree denotes absorbance spectrum (sometimes called emissotnsp), \; is the fluores-
cence emission wavelengtk, the excitation wavelengthy the fluorescence emission spectrum
andc; is the concentration of the component in the sample nurhb@&rovided it can be sepa-
rated from diffusion phenomena, the fluorescence phenomalhmws to determine the concen-
tration of a diluted (fluorescent) chemical component, apssily to recognize it thanks to its

fluorescent spectrum.

18



A difficulty appears when the solution contains more thanfar@escent solute. In such a case,
the overall fluorescence intensity is an unknown linear doatton of component fluorescence

intensities:

I(Ap Ae k) = I Z’Ye()\f) €r(Ae) Cr (57)
¢

ck,¢ Stands for the concentration of theth fluorescent solute in sampte It is then necessary to
separate each component contribution. Assuming that e finitnber of excitation and emission
frequencies are measured, so that the measurements a@ ist@ finite array of order 3 and
finite dimensions, say x J x K, t;jr = I(A¢(i), Ae(j), k). Itis clear, by comparing equations
(57) and (2), that thanks to uniqueness of the CP decompsiine can identifyy, (A ¢ (7)) with

aif, €(Ae(4)) With b;y andc, , with cx¢. Hence, the computation of the CP decomposition
yields emission spectra of each component as well as thegecdration. There is no need to
know in advance what are the components expected to be pragha solution.

Two tensorsl; andT, have been simulated, usig= 4 components whosgl x 47 emission-

excitation matricesg;b?, Vi = 1,...,4) were very similar to the ones displayed in Fig. 4.

These images [21] were provided by the PROTEE-EA 3819 Labiyrat the South Toulon Var
University (France). Two random positive matrig€shave been used (B0 x 4 matrix and a
128 x 4 matrix). The first tensof is 71 x 47 x 10 and the second tensb is 71 x 47 x 128.

To establish a comparison between the different algorithmesneed an error index. We have
chosen to usefl = | T — T|[% or Egp = 10log,o(E), with T = Y°F_ a8, ® by @ ¢, anda, b
andc the estimated factors. The best results are obtained wieegrtbr indexZ is found to be
close to 0 in linear scale{co in logarithmic scale).

In the left column of the Fig. 1, we have compared the resuitaioed with theELS version

of the different suggested algorithmise( ELS is executed at each iteration, excepted for the
so-calledALS — Cichocki andNTF-HALS algorithms, in which there is nBLS enhancement)
versus the iterations, while the results are representetis¢he number of arithmetic operations
in the right column of the Fig. 1. For Fig. 1, 2 and 3, all theagithms were initialized using the
Bro’s DTLD algorithm [28]. For theALS — Cichocki algorithm with eitheri;-norm oris-norm

regularization, we have choseny, = ap = a¢ = 1070 (it is the reason why the performances
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are bounded). For thBTF-HALS algorithm, we have implemented the algorithm described
p. 357 of [5]. We can observe that both Gauss-Newton algostBFGS andDFP) have nearly
the same behavior. The conjugate gradient approach anly fimalgradient method require more
time to reach convergence. However, the conjugate gradigotithm offers a good compromise
between speed and performances and contrary to Quasi-Nalgorithms, it does not require
the estimation of thé/ 4 J+ K) F'x (I +J+ K ) F' Hessian matrices (or their approximation) and
as a consequence it can be applied to very large tensors. tkwegh theNTF-ALS andNTF-
HALS algorithms are often the fastest algorithms during the ifiesations, we can observe in
the bottom of the Fig. 5, that the reconstructed emissiaitaion matrices are not necessarily
good (even if the reconstruction error was weak; the eséichainission-excitation matrices have
to be compared with the true emission-excitation matribas were perfectly estimated in the
Fig. 4 when there is an error in the model (hefewas assumed five whereas four components
were effectively present in the mixture). On the chosen @tarfwhere all the algorithms were
initialized using the same random initialization), our gested algorithms seem less sensitive to
this kind of model error as observed in the top of the Fig. Baly, a good way to diminish the
global computational time consists of alternating betwEe® (every sayl0 or 20 iterations)

and backtracking as it can be observed in the Fig. 2 and 3.

6. Conclusion & Discussion

In this article, we have suggested several algorithms tdedhe problem of the computation of
the minimal polyadic decomposition of nonnegative thresrarrays. The calculation of gra-
dient matrices has been performed, allowing to implemeatgnditioned non linear conjugate
gradient, gradient and Quasi-Newton approaches. Twooressif each algorithm have been
studied: the enhanced line searé&h§) version and the backtracking version (alternating with
ELS). The algorithmic complexity has been provided too. Finatbmputer simulations have
been performed in the context of data analysis, in order toahstrate both the good behavior
of these algorithms compared to others put forward in tleedture, and their usefulness in data

mining applications.
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Figure 1: Reconstruction error (dB) versus the number odiitens (left) using a nonnegativé@ x 47 x 10 tensor (top
left), a nonnegativg'1l x 47 x 128 tensor (bottom left). Reconstruction error (dB) versusrthmber of arithmetic
operations (right) using a nonnegative x 47 x 10 tensor (top right), a nonnegativ@ x 47 x 128 tensor (bottom
right). The same legend is used for the 4 charts.

Appendix

Appendix A. Calculation af (A, B, C)

We use similar properties regarding the trace as thosedginesed in [10]. Considering three
M x M square matrice®;, Dy and D3 and four rectangular matricdd,4, D5, Dg and D7

(resp.M x N, N x M, M x N andM x N), we have the following properties [20]:
Py. (D4D5)T = DIDYT.
Py. trace {D;} = trace {D7 }.
Py. trace {D; + D3} = trace {D;} + trace {Ds}.

Ps. trace{D;DyD3} = trace {D3D1Dy} = trace {D2D3D; }
= trace {D1Dy} = trace {Dy;D; }.
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Figure 2: ComparisoBFGS with backtracking ELS every 10 iterations) anBFGS with ELS at each iteration:
reconstruction error as a function of the number of aritlicnagterations.

Py. trace {D4D5} = trace {D;Dy}.
Ps. d(DT) = (dD,)".

Ps. d(D1D3) = dD; D3 + D;dDs.

P7. d(D; + D2) = dD; + dDs.

Pg. d(trace {D;}) = trace {dD; }.

Py. d(D; EDy) =dD; Dy + Dy BdDy = d(D; 0 D;) =2D; 0 dD;.

Pip. D, Dg = Dg Dy,
P;;. (D40 Dg)T =D O DE.
Pyy. trace{DI (D 0 D7)} = trace{(D} I D{)D7}.

Like in [9], our aim is to obtain:

OH(A,B,C)
oA

OH(A,B,C)
OB

OH(A,B,C)

dH(A,B,C) = ( e

JdA) + ( ,dB) + ( ,dC), (58)

Whereg’—A means the partial derivative with respect to the matix
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Figure 3: ComparisoBFGS with backtracking ELS every 10 iterations) anBFGS with ELS at each iteration:
reconstruction error as a function of complexity

Or, using circular permutations and the aforementionegentesP, — Py , we have:

dH(A, B, C) = trace {d(8;)8(, } + trace { 67, 61 }
— 2trace {67, dé 1) | = 2trace { 87, dd(5) | = 2trace {87;)dd(s) |
— 4trace {_5{1)(A HdA)A[(CEC)o (BEB)” — 64 (BIIB)A[(CEC) o (ADA)]"
~67,(CEdC)A[(BEB) ® (AT A)]T}
— trace {4 (A (coc)e®B®EB)T (—5(1))T> (A dA)}
+ trace {4 (A (COC)o (ADA)" (—5(2))T) (BO dB)}

+ trace {4 (A (BOB)o (ADA)” (—5(3))T) (co dC)}
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Figure 4: Casd factors, assuming’ = 4, the 4 estimated emission-excitation images that peyfétthe emission-
excitation images of the 4 considered fluorophores.

Using propertyP 1o — P1» ([20], p. 53) and the fact that = AT sinceA is diagonal , we have:

dH(A, B, C) —trace{ [(A (CmC) (BDB)]T(—d(l))T)DAT} dA}

+trace {4[(A[(CEC) o (AT A)T (=5(»)") O T} dB}
A

) B
+ trace (BEB) o (ADA)” (—5(3))T) g CT} dc}

/N N

AT (=6 [(CEC)® (BDB)]A)]TdA}
+trace {4[BO (=65 [(COC) ® (ADA)]A)]TdB}
+trace {4[C T (=65 (BOB) ® (AT A)|A)]" dc}

=(4[AQ (-6 [(COC)® (BEB)|A)],dA)
+(4[BO (- [(CHC)o(ALA)A)],dB)
+(4[CH (-0 [(BEB)® (ADA)A)],dC)
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By identification with (58), it is finally found that:

VaH(A,B,C) = W —4AE (-6 [(CEC)o (BOB)A), (59
VeH(A,B,C) = w —4BE((-6)(COC)o (ADA)A),  (60)
VcH(A,B,C) = % =4C 0 ((—63)[(BOB)® (ALDA)A). (61)

Appendix B. Enhanced line search
We intend to minimize the following expression with resp@ci:
H(.) = |T"*~[(A+ pDa) B (A + pDa)]A

[((C+ pDc) @ (C + uD¢)) © (B + uDp) & (B + uDg))]" ||?

First, to clarify the expressions, we define some intermedjaantities:
Eo=ADA
E:=AUDA+DAHJA =2ACDa
Es =Da 1Dy
Fo=(CEC)® (BEB)
F; = (CED¢c)® (BOB)+ (DcEC)® (BEB)
+(CHC)®(BEDB) + (CHC)® (D HB)
=2[(CED¢c)® (BEB)+ (CHC)6 (BEDg)]
F; = (CHDc)® (BHUDg) + (CHDc)® (DpIB) + (DcHC)® (BUDsg)
+(DcHC)o (DpEB)+ (DcD¢c)® (BEB)+ (CHC)® (D HDg)
=4[(CHDc)® (BEDg)|+ (DcEDc)® (BEB) +(CHC)® (Dp L Dsg)
F3 = (CED¢c)® (DpEHDg) + (DcEC) 6 (Dp HDg)
+(DcEDe)® (BEODg) + (Dc D De) © (Dp [ B)
=2[(CHDc)® (D IDg) + (Dc D¢) © (B Dg)]

F4=(DcEDc)O® (DB LI Dpg)
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By developing, it leads to:

H(.) = |TH" — [Bo + Exp + Bop’|A[Fap® + Fap® + Fop® + Frp+ Fol|?
= |(—E2AF, ) + (—E1AF," — EoAF5")y’

+ (—EoAF4" —E1AF3T — EoAF, )t + (~EgAF3T — EjAF,T — EoAF T3

+ (~EoAFy" —EjAF;T — EoAF )2 + (~EgAF,T — EqAF )p

+ TI’JK — E()AFOT”2

Again, we define intermediate variables:

Ko=T//K — EqAF," Ki=—EoAF,T — E{AF37 — EoAF,T
K1=—E0AF1T — ElAFOT K5=—E1AF4T — EzAF3T
K2=—E0AF2T — ElAFlT — EzAFOT K6=—E2AF4T

K3:—E0AF3T — ElAFzT — EzAFlT

H(.) = trace { (Keu® + Ksp® + Kap' + Ksp® + Kop? + Kip + Ko)

(Kop® + Ksp® + Kap' + Kap® + Kop® + Kyp + Ko)T}
= trace { (K¢Kg' )u'?

+ (KeKs” + K5Kg” 1!

+ (KeKaT + KsKs? + KaKegD)p!

+ (KeKs” + KsKyT + KyKsT + KsKg! ) !

+ (KeKa2" + KsKs” + KyKy' + K3Ks” + KoK )y

+ (KeK1T + KsKo? + K4K3” + KsKyT + KoKs? + K1 Kg? )’

+ (KeKo? + KsK1 7 + KyKoT + K3K3z” + KoKy + K1 Ks” 4+ KoKg” )

+ (KsKo” + KaK17 + KsKo” + KoKz + K1Ky” + KoKs” )’

+ (K4Ko? + K3Ki T + KoKoT + KKz + KoKyt
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+ K3Ko? + KoK T + K1 Ko + KoK )p?
+ (K2Ko? + K1 K17 + KoKaT)p?
+ (KlKOT + KoKlT)/L

+KoKo” }

The thirteen coefficients, . . . , a1 are finally obtained by identification.
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Figure 5: Casd factors, assuming’ = 5, the 5 estimated emission-excitation images using theugaig¢ gradient
algorithm with positivity constraint (top) and tHeLS algorithm with positivity constraint projection based ttoon).



