ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

Microbiote intestinal (flore intestinale)

  initiation musicale

   

 

 

 

 

 

Microbiote intestinal (flore intestinale)

Sous titre
Une piste sérieuse pour comprendre l’origine de nombreuses maladies

Notre tube digestif abrite pas moins de 1012 à 1014 micro-organismes, soit 2 à 10 fois plus que le nombre de cellules qui constituent notre corps. Cet ensemble de bactéries, virus, parasites et champignons non pathogènes constitue notre microbiote intestinal (ou flore intestinale).
Son rôle est de mieux en mieux connu et les chercheurs tentent aujourd’hui de comprendre les liens entre les déséquilibres du microbiote et certaines pathologies, en particulier les maladies auto-immunes et inflammatoires.
       

Dossier réalisé en collaboration avec Rémy Burcelin (unité Inserm 1048 /université de Toulouse Paul Sabatier, Institut des maladies métaboliques et cardiovasculaires, hôpital Rangueil, Toulouse), Laurence Zitvogel (unité Inserm 1015 /Université Paris Sud, "Immunologie des tumeurs et immunothérapie contre le cancer", Institut Gustave-Roussy, Villejuif), Guillaume Fond (unité Inserm 955 /Université Paris-Est Créteil Val-de-Marne, Fondation FondaMental, Institut Mondor de recherche biomédicale, hôpital Mondor, Créteil) et Harry Sokol (unité Inserm 1157 /CNRS/UPMC, "Micro-organismes, molécules bioactives et physiopathologie intestinale", Hôpital Saint-Antoine, Paris)

Comprendre le rôle du microbiote intestinal
Le microbiote est l'ensemble des micro-organismes - bactéries, virus, parasites, champignons non pathogènes, dits commensaux - qui vivent dans un environnement spécifique. Dans l'organisme, il existe différents microbiotes, au niveau de la peau, de la bouche, du vagin…  Le microbiote intestinal est le plus important d'entre eux, avec 1012 à 1014 micro-organismes : 2 à 10 fois plus que le nombre de cellules qui constituent notre corps, pour un poids de 2 kilos !

Le microbiote intestinal est principalement localisé dans l'intestin grêle et le côlon – l'acidité gastrique rendant la paroi de l'estomac quasi stérile. Il est réparti entre la lumière du tube digestif et le biofilm protecteur que forme le mucus intestinal sur sa paroi intérieure (l’épithélium intestinal).
La présence de micro-organismes dans l'intestin est connue depuis plus d'un siècle et on a vite présupposé qu'il existait une véritable symbiose entre notre organisme et cette flore. Mais, jusque récemment, les moyens techniques permettant d’étudier les détails de cette interaction étaient limités : seule une minorité d'espèces bactériennes du microbiote pouvait être cultivée in vitro. La mise au point des techniques de séquençage haut débit du matériel génétique ont donné un nouvel élan à cette recherche et il existe aujourd’hui un réel engouement de la recherche pour décrire la nature des interactions hôte-microbiote, celles des micro-organismes entre eux, et leur incidence
incidence
Nombre de cas nouveaux d'une maladie, apparus durant une période de temps donnée.
en matière de santé.
Ainsi, le rôle du microbiote intestinal est de mieux en mieux connu. On sait désormais qu'il joue un rôle dans les fonctions digestive, métabolique, immunitaire et neurologique. En conséquence, la dysbiose, c'est-à-dire l'altération qualitative et fonctionnelle de la flore intestinale, est une piste sérieuse pour comprendre l'origine de certaines maladies, notamment celles sous-tendues par des mécanismes auto-immuns ou inflammatoires. Cette thématique est devenue centrale pour la recherche biologique et médicale.
MétaHIT : Une flore d'une richesse inédite
L'étude MétaHIT, lancée en 2008 et coordonnée par l'Inra, a eu pour objectif d'identifier l’ensemble des génomes microbiens intestinaux (métagénome) par séquençage haut débit. Elle a aussi permis de dessiner une ébauche des interactions reliant métagénome et santé. Cette étude, première du genre, s'est fondée sur l'analyse d'échantillons de selles recueillis auprès de 124 personnes. Elle a identifié ainsi un total de 3,3 millions de gènes différents, appartenant à plus de 1 000 espèces différentes, dont une large majorité est d'origine bactérienne. Au plan individuel, elle a aussi montré que chaque individu portait en moyenne 540 000 gènes microbiens, soient environ 160 espèces, réparties en sept phyla (groupes de familles) différents. Enfin, MetaHIT a été la première étude à démontrer l'extrême richesse de la flore intestinale, en identifiant des centaines d'espèces bactériennes inconnues jusque-là.

Microbiote intestinal © PixScience pour l'Inserm
A l'instar de l'empreinte digitale, le microbiote intestinal est propre à chaque individu : il est unique sur le plan qualitatif et quantitatif. Parmi les 160 espèces de bactéries que comporte en moyenne le microbiote d'un individu sain, une moitié est communément retrouvée d'un individu à l'autre. Il existerait d'ailleurs un socle commun de 15 à 20 espèces en charge des fonctions essentielles du microbiote. Bien que cela soit discuté, il semble que l'on puisse distinguer des groupes homogènes de population, selon la nature des espèces qui prédominent dans leur microbiote : on distingue trois groupes – ou entérotypes – principaux : bacteroides, prevotella et clostridiales.
Les virus bactériens (qui infectent les bactéries) sont aussi très nombreux au sein du microbiote. Ils peuvent modifier le patrimoine génétique des bactéries intestinales ou son expression. Ainsi, le virome constitue sans doute une autre pièce dans le puzzle de la physiopathologie propre à la flore intestinale, tout comme le microbiote fongique qui regroupe levures et champignons. Autant de sujets d’étude à explorer.

Un écosystème unique formé dès la naissance

Le microbiote d'un individu se constitue dès sa naissance, au contact de la flore vaginale après un accouchement par voie basse, ou au contact des micro-organismes de l'environnement pour ceux nés par césarienne. La colonisation bactérienne a lieu de façon progressive, dans un ordre bien précis : les premières bactéries intestinales ont besoin d’oxygène pour se multiplier (bactéries aérobies : entérocoques, staphylocoques…). En consommant l'oxygène présent dans l’intestin, elles favorisent ensuite l'implantation de bactéries qui ne prolifèrent justement qu’en absence de ce gaz (bactéries anaérobies : bactéroides, clostridium, bifidobacterium…).
Sous l'influence de la diversification alimentaire, de la génétique, du niveau d'hygiène, des traitements médicaux reçus et de l'environnement, la composition du microbiote intestinal va évoluer qualitativement et quantitativement pendant les premières années de vie. Ensuite, la composition qualitative et quantitative du microbiote reste assez stable. La fluctuation des hormones sexuelles – testostérone et estrogènes – pourra malgré tout avoir un impact sur sa composition. Des traitements médicaux, des modifications de l'hygiène de vie ou divers événements peuvent aussi modifier le microbiote, de façon plus ou moins durable. Par exemple, un traitement antibiotique réduit la qualité et la quantité du microbiote sur plusieurs jours à plusieurs semaines. Les espèces initiales sont capables de se rétablir en grande partie, mais des différences peuvent subsister. Des antibiothérapies répétées au cours de la vie pourraient ainsi induire une évolution progressive et définitive du microbiote, potentiellement délétère. Il semble cependant que nous ne soyons pas tous égaux face à ce risque : certains auraient un microbiote plus stable que d'autres, face à un même événement perturbateur.

Quand le microbiote rend service à l'organisme
Le microbiote intestinal assure son propre métabolisme en puisant dans nos aliments (notamment parmi les fibres alimentaires). Dans le même temps, ses micro-organismes jouent un rôle direct dans la digestion :
*         ils assurent la fermentation des substrats et des résidus alimentaires non digestibles
*         ils facilitent l'assimilation des nutrimentsnutrimentsSubstance alimentaire qui n’a pas besoin de subir de transformations digestives pour être assimilée par l’organisme.

grâce à un ensemble d'enzymes dont l'organisme n'est pas pourvu
*         ils assurent l'hydrolyse de l'amidon, de la cellulose, des polysaccharidespolysaccharidesGlucides constitués par un grand nombre de sucres simples

...
*         ils participent à la synthèse de certaines vitamines (vitamine K, B12, B8)
*         ils régulent plusieurs voies métaboliques : absorption des acides grasacides grasCatégorie de lipides assurant un rôle fondamental dans la structure des cellules et le stockage de l’énergie.

, du calcium, du magnésium...

Des animaux élevés sans microbiote (dits axéniques) ont ainsi des besoins énergétiques 20 à 30% fois supérieurs à ceux d'un animal normal.
Le microbiote agit en outre sur le fonctionnement de l’épithélium intestinal : des animaux axéniques ont une motricité du tube digestif ralentie. La différenciation des cellules qui composent cet épithélium est inachevée et le réseau sanguin qui l'irrigue est moins dense que chez l'animal normal. Or, ce système vasculaire a un rôle déterminant pour le métabolisme nutritionnel et hormonal, ainsi que pour l'arrimage de cellules immunitaires au sein de la paroi intestinale.
Le microbiote intestinal participe en effet pleinement au fonctionnement du système immunitaire intestinal : ce dernier est indispensable au rôle barrière de la paroi intestinale, soumise dès la naissance à un flot d'antigènes d'origine alimentaire ou microbienne. Ainsi, des bactéries comme Escherichia coli luttent directement contre la colonisation du tube digestif par des espèces pathogènes, par phénomène de compétition et par production de substance bactéricides (bactériocines). Parallèlement, dès les premières années de vie, le microbiote est nécessaire pour que l'immunité intestinale apprenne à distinguer espèces amies (commensales) et pathogènes. Des études montrent que le système immunitaire de souris axéniques est immature et incomplet par rapport à celui de souris élevées normalement : dans l'épithélium intestinal de ces souris, les plaques de Peyer, inducteurs de l'immunité au niveau intestinal, sont immatures et les lymphocytes, effecteurs des réactions immunitaires, sont en nombre réduit. La rate et les ganglions lymphatiques, qui sont des organes immunitaires importants pour l'immunité générale de l'organisme, présentent aussi des anomalies structurelles et fonctionnelles.

Microbiote et inflammation
L'inflammation est un élément important, étroitement corrélé à l'immunité : il existe à la fois un niveau physiologique d’inflammation indispensable, contrôlant notamment le microbiote, et des réactions inflammatoires importantes déclenchées en présence d'espèces pathogènes.  Ce dernier mécanisme repose notamment sur la présence de composants bactériens inflammatoires, comme les lipopolysaccharides (LPS) présents à la surface de certaines bactéries (Gram négatif). Ces antigènes provoquent une réaction immunitaire de la part des macrophages
macrophages
Cellule du système immunitaire chargée d’absorber et de digérer les corps étrangers
intestinaux qui produisent alors des médiateurs pro-inflammatoires (cytokines
cytokines
Substance synthétisée par certaines cellules du système immunitaire, agissant sur d'autres cellules immunitaires pour en réguler l'activité.
). Ceux-ci déclenchent une inflammation locale et augmentent la perméabilité de la paroi intestinale. Les LPS peuvent alors traverser cette dernière, passer dans la circulation sanguine, et provoquer un phénomène inflammatoire dans d'autres tissus cibles.
Les enjeux de la recherche
L’étude du microbiote intestinal est récemment devenue centrale pour la recherche en santé.
Maladies intestinales inflammatoires : un lien évident
Les maladies intestinales chroniques inflammatoires (MICI), comme la maladie de Crohn et la rectocolite hémorragique, sont liées à une activation inappropriée du système immunitaire dans l’intestin. Derrière leur survenue se cachent des facteurs génétiques et environnementaux (alimentation, âge...). En parallèle, l'amélioration des symptômes de patients sous traitement antibiotique, ou encore la disparition de lésions inflammatoires intestinales chez des personnes dont la paroi intestinale n'est plus au contact des fécès (dérivation fécale), ont aussi permis de suspecter le rôle du microbiote.

Un déséquilibre du microbiote en espèces bactériennes pro-inflammatoires et anti-inflammatoires, tout comme la prédominance de certaines familles de bactéries (Entérobactéries, Fusobactéries), ou la raréfaction d'autres espèces (Clostridia, Faecalibacterium) ont été décrits chez des personnes atteintes de MICI. Pour l'heure, il n'est pas possible de savoir s'il s'agit d'une cause ou d'une conséquence de ces maladies, ni de déterminer si la dysbiose à l'origine de la maladie est innée ou consécutive à un autre facteur environnemental (alimentation, médicament…). Une hypothèse séduisante est avancée : la dysbiose apparaîtrait sous l’influence de facteurs génétiques et environnementaux, mais jouerait elle-même un rôle dans l’initiation, le maintien ou la sévérité de l’inflammation, engendrant un cercle vicieux.
Par ailleurs, parmi les dizaines de gènes de prédisposition aux MICI aujourd'hui identifiés, certains jouent un rôle déterminant vis-à-vis du microbiote. La mutation du gène NOD2 est la plus fréquemment retrouvée chez les malades atteints par la maladie de Crohn : ce gène code pour un récepteur de l’immunité innée chargé de détecter un composant de la paroi bactérienne. Muté, il ne peut plus jouer ce rôle et favoriser le maintien de la barrière intestinale. D'autres mutations ont été rapportées, comme celle du gène ATG16L1, impliqué dans l'autophagie des cellules immunitaires en présence des bactéries, ou comme celle de MUC2, qui joue un rôle dans la synthèse du mucus intestinal.

Le microbiote constitue une cible thérapeutique de choix dans ces maladies inflammatoires. Jusqu'à présent, les premiers essais cliniques conduits avec des probiotiques
probiotiques
Microorganismes vivants qui, consommés en quantités adéquates, sont bénéfiques pour la santé de l'homme.
ou des prébiotiques
prébiotiques
Aliments spécifiques du microbiote, tels les polysaccharides, non utilisables par l'être humain.
n'ont pas été concluants. Toutefois, de nouvelles études sont attendues, fondées sur une sélection plus rationnelle des micro-organismes ou composés à mettre en œuvre. Parallèlement, certaines équipes essayent de créer des probiotiques génétiquement modifiés qui permettraient d'implanter le micro-organisme d'intérêt tout en la dotant de propriétés supplémentaires, comme la sécrétion de médiateurs immunomodulateurs
immunomodulateurs
Médicament qui stimule ou freine le système immunitaire.
.
Dysbiose et métabolisme
Le diabète et l'obésité ont une origine multifactorielle, à la fois génétique, nutritionnelle et environnementale. La part respective de chacun de ces facteurs est variable d'un individu à l'autre et les mécanismes moléculaires incriminant chacun d'entre eux restent à décrire précisément.

Cependant, on sait que ces maladies métaboliques sont caractérisées par une inflammation chronique dans laquelle le microbiote est impliqué.
Ainsi, une augmentation des graisses dans l'alimentation habituelle augmente la proportion des bactéries à Gram négatif. Par conséquent, elle augmente la présence de LPS inflammatoires au niveau local puis, après passage des LPS dans la circulation sanguine, dans le foie, les tissus adipeux, musculaires… L'inflammation à bas bruit qui s'installe dans ces tissus de façon chronique favorise l'insulinorésistance préalable au diabète et à l'obésité. Chez la souris axénique, l'implantation de microbiote provenant de souris obèses provoque d'ailleurs rapidement une prise de poids importante.
D'autres mécanismes impliquant le microbiote sont aussi probablement impliqués : outre le LPS, l'augmentation de la perméabilité épithéliale pourrait laisser passer des bactéries entières. Leur implantation durable au niveau des tissus adipeux, musculaires et hépatiques favoriserait le maintien in situ de l'inflammation. Parallèlement, certains métabolites
métabolites
Composé organique issu du métabolisme (sucres, acides aminés, acides gras...).
bactériens circulants auraient un rôle déterminant dans le mécanisme de régulation de la pression artérielle par le rein, ou dans le développement de la plaque d'athérome.
L'idée est aujourd'hui de développer des stratégies personnalisées, dans lesquels l'apport de prébiotiques, probiotiques ou symbiotiques est adapté aux spécificités individuelles du patient. A plus long terme, des traitements préventifs pourraient être développés afin de prévenir la survenue de ces maladies.

Capsule - Sciences - Sorbonne Université

Flore intestinale, obésité, risques cardio-métaboliques

De la cancérogenèse à la thérapie anticancéreuse
Dans le domaine du cancer, le microbiote intervient à deux niveaux : tout d'abord celui de la cancérogenèse elle-même. Un certain nombre de données permet en effet d'affirmer que certaines tumeurs sont liées à la présence de micro-organismes précis, ou encore d'une dysbiose au niveau intestinal. Pour exemple, un déséquilibre du microbiote en faveur de certaines espèces (fusobacterium) augmenterait le risque de cancer colorectal ; la présence d'Helicobacter pylori favorise la survenue de cancer gastrique. Des données recueillies chez l'animal montrent encore une augmentation de l'incidence et de la sévérité de tumeurs mammaires chez des souris soumises à des régimes antibiotiques fréquents. Ces données sont corrélées à une étude épidémiologique dans laquelle les femmes jeunes ayant reçues en moyenne plus de deux antibiothérapies par an ont un risque de cancer du sein supérieur aux autres. Dans ce domaine toutefois, la difficulté est de discriminer le rôle du microbiote et celui d'autres facteurs de risque cancérogènes – tabac, alcool…- qui favorisent eux-mêmes une dysbiose.
Outre la cancérogenèse, l'efficacité des thérapies anticancéreuses serait aussi sous l'influence du microbiote. Il existerait une synergie d'action entre certains médicaments anticancéreux et la flore intestinale : on sait ainsi que l'efficacité du cyclophosphamide - couramment utilisé en oncologie - est influencée par le microbiote qui favorise la perméabilité intestinale et la migration de bactéries immunogènes
immunogènes
Qui induit une réaction immunitaire.
vers le système immunitaire tumoral. Elles provoqueraient une réponse immunitaire
réponse immunitaire
Mécanisme de défense de l’organisme.
en synergie avec le médicament antitumoral.
L'immunothérapie
immunothérapie
Traitement qui consiste à administrer des substances qui vont stimuler les défenses immunitaires de l’organisme, ou qui utilise des protéines produites par les cellules du système immunitaire (comme les immunoglobulines).
, utilisée depuis peu dans le traitement du mélanome
mélanome
Tumeur maligne de la peau.
et des cancers bronchiques et rénaux, bénéficierait aussi d'un coup de pouce de la part des bactéries de type Bacteroides. Elles influenceraient la capacité du système immunitaire à résister naturellement au mélanome. Par ailleurs, l'efficacité d'un traitement anti-mélanome par ipilimumab est elle-même corrélée à la présence de l'une ou l'autre de deux espèces de bactéries de la famille Bacteroides.
D'autres thérapeutiques (sels de platine, nivolimab) et d'autres cibles cancéreuses pourraient répondre aux mêmes mécanismes. Les perspectives thérapeutiques sont nombreuses : l'analyse du microbiote pourrait devenir un test systématique avant la mise en œuvre d'un traitement, prédictif de la réponse thérapeutique. Si nécessaire, des traitements spécifiques du microbiote y seraient adjoints : des probiotiques connus pour être capables de booster les lymphocytes intratumoraux pourraient être associées au traitement conventionnel anticancéreux.
La neuropsychiatrie sous l'influence de l'axe intestin-cerveau

Le système nerveux qui régit l'intestin contient à lui seul 200 millions de neurones. Sa fonction première est d'assurer la motricité intestinale ; cependant, 80% de ces cellules nerveuses sont afférentes, c'est-à-dire qu'elles véhiculent l'information dans le sens intestin-cerveau. C'est la raison pour laquelle on qualifie le système nerveux entérique de deuxième cerveau. Les chercheurs ont très tôt posé l'hypothèse qu'une modification du microbiote pouvait modifier l'information transmise au système nerveux central
système nerveux central
Composé du cerveau et de la moelle épinière.
. Plusieurs expériences cliniques ont été rapportées, comme celle d'une amélioration significative de symptômes autistiques par un traitement antibiotique. Si la corrélation semblait improbable il y a quelques années, elle est depuis considérée avec sérieux.
Le rôle du microbiote est évoqué dans de nombreuses maladies neuropsychiatriques : l'autisme, la schizophrénie, l'anxiété et la dépression ou les troubles bipolaires. Les arguments scientifiques sont encore insuffisants dans la plupart des cas, mais des éléments de preuve préliminaires ont été récemment publiés. Il viendrait s'ajouter aux nombreux facteurs – génétique, épigénétique, environnementaux, psychologiques… - qui jouent eux aussi un rôle déterminant dans le déclenchement de telles maladies.
Chez les personnes atteintes de schizophrénie ou de troubles bipolaires, l'équilibre entre les différentes cytokines pro-inflammatoires ou anti-inflammatoires dans le sang est perturbé, médié entre autre par le LPS et par d'autres marqueurs de translocation bactérienne.
Dans l'autisme, il a aussi été montré que des souris pouvaient développer un comportement d'anxiété et une automutilation si la composition de leur microbiote était significativement modifiée durant une période précise de leur croissance. Les chercheurs posent l'hypothèse qu'un phénomène similaire surviendrait chez les enfants et favoriserait le développement de l'autisme.

Dernièrement, des études ont suggéré que le microbiote pouvait avoir un rôle déterminant dans les maladies neurodégénératives : il serait impliqué dans l'inflammation cérébrale de la maladie d'Alzheimer. La gravité des symptômes parkinsoniens est aussi corrélée à la concentration d'une espèce particulière (Entérobactericeae). Tous ces différents phénomènes pourraient être médiés par des substances d'origine bactérienne neuroactive. Aussi, le développement des données de transcriptomique
transcriptomique
Étude des ARN produits lors de l’étape de transcription du génome, permettant de quantifier l’expression des gènes.
(sur l’expression des gènes) et de métabolomique (relatives aux métabolites) devrait en faciliter l'identification.
Les perspectives thérapeutiques sont nombreuses : des études préliminaires ont montré que l'administration de certains probiotiques permettait d'améliorer les symptômes d'anxiété ou de dépression chez des personnes malades comme chez des personnes saines ; d'autres ont montré que l'adaptation du régime alimentaire pouvait améliorer le déclin cognitif. Ces pistes restent pour l'heure extrêmement précoces et demandent à être confirmées.

Thérapeutique : Les six pistes thérapeutiques pour modifier la composition du microbiote ?
Les maladies déclenchées ou entretenues par une dysbiose pourraient être soignées par six moyens thérapeutiques différents :
*         une alimentation favorisant le développement des bactéries bénéfiques pour le système digestif.
*         un traitement antibiotique ciblant les espèces néfastes impliquées dans la physiopathologie de la maladie. Cette option ne peut cependant être envisagée comme un traitement chronique du fait de la pression de sélection qu'elle peut engendrer ; elle pourrait aussi induire de nouvelles pathologies.
*         l'apport par voie orale de probiotiques, des micro-organismes vivants, non pathogènes et démontrés comme bénéfiques pour la flore intestinale.
*         l'apport de prébiotiques, des composants alimentaires non digestibles, utiles à la croissance ou l'activité de certaines populations bactériennes intestinales.
*         les symbiotiques, qui combinent pré et probiotiques.
*         la transplantation fécale, qui consiste à administrer une suspension bactérienne préparée à partir des selles d’un individu sain par sonde nasogastrique ou par lavement. Elle permet d'implanter un microbiote normal chez un patient malade. Cette option thérapeutique est d'ores et déjà efficace et utilisée dans les infections intestinales sévères à Clostridium difficile.

 

 DOCUMENT      inserm     LIEN 

 

 
 
 
initiation musicale toulon  

A l’origine d’une maladie rare, un intestin frileux et intolérant à ses propres bactéries

  initiation musicale

       

 

 

 

 

 

A l’origine d’une maladie rare, un intestin frileux et intolérant à ses propres bactéries

COMMUNIQUÉ | 26 FÉVR. 2019 - 16H36 | PAR INSERM (SALLE DE PRESSE)

IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE

Un mécanisme de tolérance vis-à-vis de la flore intestinale serait impliqué dans la survenue d’une forme familiale de maladie rare auto-inflammatoire induite par le froid. C’est ce que montrent les travaux de chercheurs du Centre d′Infection et d′Immunité de Lille (Inserm/Université de Lille/CNRS/CHU de Lille/Institut Pasteur de Lille), du laboratoire de physiopathologie des maladies génétiques d’expression pédiatrique (Inserm/Sorbonne Université) et du département d’immunologie de l’université d’Hohenheim. Ces travaux, parus dans Nature Communications, mettent en évidence l’implication dans la survenue de la maladie d’une réponse inflammatoire exacerbée contre la flore intestinale permettant une réponse immunitaire plus efficace contre certains pathogènes. Ils ouvrent ainsi la voie à de nouvelles pistes thérapeutiques pour la prise en charge des patients.

Le syndrome auto-inflammatoire induit par le froid (ou urticaire familial au froid) se manifeste par des accès de fièvre déclenchés par le froid, accompagnés de crises d’urticaire et de douleurs digestives et articulaires. Les patients – une vingtaine de cas identifiés à ce jour – sont porteurs d’une mutation sur le gène NLRP12 qui s’exprime selon un mode autosomique dominant (la présence d’un seul allèle muté est suffisant pour que la maladie se manifeste). Jusqu’à présent, les mécanismes physiopathologiques à l’origine de la maladie demeuraient inconnus.
Une équipe de recherche dirigée par Mathias Chamaillard, chercheur Inserm au sein du Centre d′Infection et d′Immunité de Lille (Inserm/Université de Lille/CNRS/CHU de Lille/Institut Pasteur de Lille) et ses collaborateurs au sein du laboratoire de physiopathologie des maladies génétiques d’expression pédiatrique (Inserm/Sorbonne Université), ainsi que du département d’immunologie de l’université d’Hohenheim, ont cherché à mieux comprendre comment se développait ce syndrome grâce à des études menées chez la souris et chez l’Homme.
Les chercheurs ont constaté que l’inactivation du gène NLRP12 déclenchait chez la souris une inflammation intestinale, mais la rendait résistante à certaines bactéries pathogènes, ce qui laisse à penser que NLRP12 pourrait jouer un rôle clef dans la tolérance immunitaire vis à vis de la flore intestinale.
Or, l’équipe de recherche a observé qu’une autre molécule appelée NOD2 jouait également un rôle dans l’immunité intestinale en favorisant la défense contre ces mêmes pathogènes bactériens.

En outre, une mutation sur le gène NOD2 prédispose à la maladie de Crohn qui présente de troublantes similitudes avec le syndrome dont il est question ici : des douleurs intestinales et une prévalence plus importante dans les pays froids que dans les pays chauds.
Enfin, les chercheurs ont constaté l’existence d’une interaction physique entre cette protéine NOD2 et la protéine NLRP12.

Baisse de tolérance aux bactéries de la flore intestinale
Chez les personnes atteintes du syndrome auto-inflammatoire lié au froid, la production de la protéine NLRP12 est réduite. Reproduit chez la souris, ce phénomène modifie l’activité de NOD2 et réduit la tolérance aux bactéries commensales avec un recrutement accru de cellules inflammatoires dans le tube digestif. En revanche, l’efficacité d’élimination des pathogènes s’en trouve améliorée. Autrement dit, en situation normale, NLRP12 réprime l’activité de NOD2 et améliore la tolérance aux bactéries intestinales. Ces résultats suggèrent qu’un inhibiteur de la voie NOD2 pourrait atténuer les symptômes de ces patients.

La baisse de tolérance chez les sujets atteints du syndrome auto-inflammatoire lié au froid génère une inflammation chronique qui pourrait expliquer les douleurs intestinales chez les patients. Mais pourquoi le froid déclenche-t-il des manifestions supplémentaires hors du système digestif ? Les chercheurs suspectent une augmentation de la perméabilité intestinale en cas de température basse. Chez les sujets sains, ce phénomène serait sans conséquence mais chez les sujets malades, de nombreuses molécules ayant une activité pro-inflammatoire ainsi que des débris bactériens pourraient passer en masse dans le sang. Une inflammation locale secondaire pourrait donc expliquer en partie les autres symptômes comme la fièvre, les céphalées et les douleurs articulaires.
Mathias Chamaillard et ses collègues s’attaquent désormais, chez la souris, à cette nouvelle piste de travail.

POUR CITER CET ARTICLE :
COMMUNIQUÉ – SALLE DE PRESSE INSERM
A l’origine d’une maladie rare, un intestin frileux et intolérant à ses propres bactéries
LIEN :
https://presse.inserm.fr/a-lorigine-dune-maladie-rare-un-intestin-frileux-et-intolerant-a-ses-propres-bacteries/33825/

 

  DOCUMENT      inserm     LIEN

 
 
 
initiation musicale toulon  

Limiter le vieillissement des muscles : un petit ver ouvre une piste

  initiation musicale


 

 

 

 

 

SCIENCE 15.02.2018

Limiter le vieillissement des muscles : un petit ver ouvre une piste
En vieillissant, le ver Caenorhabditis elegans voit l’expression du facteur de transcription


facteur de transcription
Protéine qui régule l’expression des gènes.
UNC120/SRF diminuer dans ses muscles. Parce que ce gène est également présent dans le tissu musculaire humain, cette observation pourrait ouvrir la voie à des traitements améliorant le vieillissement en bonne santé.

A première vue, le petit ver Caenorhabditis elegans (C. elegans) a peu de points communs avec l’être humain… et pourtant, il est utilisé de longue date dans la recherche médicale. En effet, nombre de ses gènes sont conservés chez les mammifères supérieurs. De plus, il partage des mécanismes moléculaires et cellulaires avec l’homme. À partir de ce modèle animal, une équipe de chercheurs vient d’ailleurs de décrire un mécanisme lié au vieillissement musculaire qui pourrait exister chez l’homme : selon leurs travaux, la fonction musculaire de C. elegans est placée sous influence génétique. Ainsi, en vieillissant, le muscle de C. elegans exprime de moins en moins le facteur de transcription UNC-120 responsable de l’expression de différents gènes impliqués dans la contraction musculaire. Ce phénomène expliquerait la moindre mobilité des vers vieillissants. En maintenant l’expression d’UNC-120/SRF, il serait néanmoins possible de retarder le vieillissement musculaire du ver.
Chez l’homme, UNC-120 est appelé SRF. Parce qu’il a été montré par ailleurs que l’expression de ce dernier diminue avec le vieillissement chez le sujet âgé, la transposition de ces résultats du ver à l’homme semble possible. Et elle permettrait d’envisager sereinement des perspectives thérapeutiques : "Développer des traitements allongeant la durée de vie pose des questions éthiques, explique Florence Solari* qui a dirigé ces travaux. Mais disposer de traitements améliorant le vieillissement en bonne santé, sans modifier la longévité, offre une alternative intéressante".

Du vieillissement musculaire au vieillissement de l’organisme...
Avant cela, bien d’autres étapes attendent néanmoins les chercheurs. Et en premier lieu, des investigations génétiques complémentaires : "Nos observations montrent que d’autres gènes impliqués dans le phénomène du vieillissement musculaire restent à identifier. Nous devons donc conduire de nouvelles études chez C. elegans ", précise la chercheuse. Le travail sera désormais plus facile, étant donné la meilleure connaissance de la physiologie du tissu musculaire tirée de ces premiers travaux : "Une part importante de ces recherches a consisté à décrire le vieillissement du tissu musculaire du ver, jusqu’alors peu connu, à travers une série d’explorations préalables". C’est en comparant les fonctions cellulaires de vers selon leur longévité que les chercheurs ont identifié des biomarqueurs
biomarqueurs
Paramètre physiologique ou biologique mesurable, qui permet par exemple de diagnostiquer ou de suivre l’évolution d’une maladie.
pertinents, comme la fragmentation des mitochondries
mitochondries
Organite cellulaire qui joue un rôle crucial dans le métabolisme cellulaire en assurant la production d'énergie.
ou l’accumulation de vésicules d’autophagie. Ces critères pourront désormais être utilisés dans les prochaines investigations. Une autre perspective est aussi de conduire des travaux similaires pour étudier l’évolution d’autres tissus ou organes avec le temps.
Vieillir en bonne santé est un objectif individuel et collectif. Pour y arriver, il est indispensable de comprendre comment tissus et organes vieillissent. Dans ce domaine, et ces travaux le démontrent, l’étude du génome est incontournable pour accéder aux mécanismes : "Depuis les années 1980, de nombreux travaux réalisés sur les organismes modèles ont montré que la longévité est influencée par les gènes, raconte Florence Solari. Chez l’Homme, on sait que l’environnement joue un rôle prépondérant sur notre longévité, notamment grâce aux études sur les vrais jumeaux. Cependant la réponse de notre organisme à celui-ci dépend en grande partie de notre patrimoine génétique".
La promesse d’un vieillissement en bonne santé paraît donc un espoir accessible, même s’il est encore éloigné…

Note :
* unité 1217 Inserm/CNRS/Université Lyon 1, équipe Génétique et neurobiologie de C. elegans, Institut NeuroMyoGene, Villeurbanne

Source
Mergoud Dit Lamarche A et coll. UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell. 2018 Jan 3. doi: 10.1111/acel.12713.

 

 DOCUMENT      inserm     LIEN

 
 
 
initiation musicale toulon  

Augmenter les échanges hippocampe-cortex améliore la mémoire

  initiation musicale

 

 

 

 

 

 

Augmenter les échanges hippocampe-cortex améliore la mémoire

COMMUNIQUÉ | 17 MAI 2016 - 11H08 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Pour la première fois, des chercheurs du Centre interdisciplinaire de recherche en biologie (CNRS/Inserm/Collège de France) ont établi la preuve directe que la mémorisation à long terme des souvenirs implique un échange pendant le sommeil entre deux structures du cerveau, l’hippocampe et le cortex : en augmentant cet échange, ils ont réussi à provoquer la mémorisation de souvenirs qui sinon auraient été oubliés. Ces travaux sont publiés dans la revue Nature Neuroscience le 16 mai 2016.


Depuis les années 1950, les principales théories de la mémoire postulent que les souvenirs sont initialement formés dans l’hippocampe, et progressivement transférés dans le cortex pour le stockage à long terme. Bien qu’étayée par de nombreux travaux expérimentaux, cette hypothèse n’avait jamais encore été directement validée.
Afin de prouver cette hypothèse, les chercheurs ont d’abord enregistré l’activité de l’hippocampe et du cortex pendant le sommeil. Ils ont constaté qu’il y avait une corrélation entre des ondes observées dans ces deux structures : lorsque l’hippocampe émet des ondulations, le cortex émet à son tour des ondes delta et des fuseaux de sommeil, comme en une série de questions-réponses. Pour établir un lien avec la mémoire, les chercheurs ont ensuite entraîné des rats à mémoriser les positions de deux objets identiques dans une pièce. Le lendemain, lors du test, un objet avait été déplacé et les rats devaient déterminer lequel. Les rats réussissaient le test s’ils avaient passé 20 minutes sur place le premier jour, mais ils échouaient s’ils n’étaient restés que 3 minutes. Cette différence se reflétait également dans les couplages entre hippocampe et cortex pendant le sommeil juste après la première exploration : ils étaient plus importants chez les rats qui réussissaient le test le lendemain. Restait à prouver que ces couplages étaient bien la cause de la mémorisation.
 
Les chercheurs ont alors mis au point un dispositif permettant de détecter en temps réel les ondulations de l’hippocampe et de déclencher aussitôt des ondes delta et des fuseaux de sommeil dans le cortex, c’est-à-dire de produire à volonté des couplages entre ces deux structures. Ils ont utilisé ce dispositif chez des rats entraînés pendant seulement 3 minutes le premier jour, et qui n’étaient donc pas censés se souvenir de l’emplacement des objets le lendemain : ces rats ont alors parfaitement réussi le test. Au contraire, si un délai variable était introduit entre les ondes hippocampiques et corticales, l’effet disparaissait.
Pour mieux comprendre les mécanismes en jeu, les chercheurs ont également enregistré l’activité du cortex pendant l’apprentissage, le sommeil et le test. Ils ont constaté que certains neurones changeaient leur activité lors du couplage au cours du sommeil, et que le lendemain le cortex répondait à la tâche en s’activant davantage près de l’objet déplacé.

Ces travaux, en démontrant les mécanismes de la mémorisation à long terme, pourraient permettre de mieux comprendre certains troubles de mémorisation chez l’homme. On pourrait ainsi envisager de pallier certains déficits de mémoire, s’ils relèvent du même mécanisme que celui étudié.

Cependant, avant toute mise en application clinique, il faudra impérativement résoudre les questions éthiques liées à ces techniques et les affiner pour pouvoir agir sélectivement sur les souvenirs que l’on souhaite renforcer.
Le but de l’équipe est maintenant de mieux comprendre les échanges d’informations entre l’hippocampe et le cortex, notamment lorsque plusieurs souvenirs doivent être mémorisés ou non.

POUR CITER CET ARTICLE :
COMMUNIQUÉ – SALLE DE PRESSE INSERM
Augmenter les échanges hippocampe-cortex améliore la mémoire
LIEN :
https://presse.inserm.fr/augmenter-les-echanges-hippocampe-cortex-ameliore-la-memoire/23942/

 

 DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 
Google